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ABSTRACT 

This report describes three approaches to the problem of predicting stresses 
and displaceaents in thick cylindrical shells.   Section I is an analysis of 
a ring or segment of an Infinitely long thick cylindrical shell based upon 
the simplifying aasunptions of the Winkler curved beam theory.    Dynamic loading 
of thick rings is treated in Chapter 2 of Section I.    Section II consists of 
a static analyais of the thick-vailed circular cylinder (or ring) by the elas- 
ticity approach dereloped by N. I. Muskhelisvili.    Shear and radial stresses 
on the inner boundary, outer boundary, or both boundaries constitute the 
loading.    A rather complete theoretical development is followed by a computer 
program and instructions for its use.    Section III presents an analysis of 
static stresses in axially loaded thick-walled cylinders with end caps.    Ihis 
axisymmetric elasticity problem is solve' by finite difference techniques end 
Southwell stress functions.    Cylinders w »h one end closed by either a flat 
or a hemispherical csp are analysed and    . example wortted for each case,    cylin- 
ders with both ends cspped are analysed in the final portion of the report. 
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t time 

u Poisson's ratio 
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v(z) tangential displacement of particle a distance z from 
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V strain energy 
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a 
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i <Pl 

Im imaginary part of 

K a Lame*  constant = 3-4a  for plane stress or 
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1^ inner boundary 

La outer boundary 

m number of interior holes 

M one  less than number of equal  subdivisions of 

circle for theoretical part;   for computer part 

M = number equal subdivisions 

[x a Lame*  constant « shear modulus;   same as G 

in engineering usage 

n division point number 

vk imaginary part of A^ 

vk vk   for negative k 

$(z)f¥(z) undetermined stress functions of complex 

variable z 

?(z) complex conjugate of  ♦ (z) 

«'(z) 
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dz 
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r»   La 

r n 

dz 

*'<«> ^f2"   - l(£) dg)(g) 
dz 

T'CZ) complex conjugate of cp'(z) 

♦ (z) rY(z) dz 

cp*(z),^*(z) holomorphic   (analytic)   function! of z 

nk real part of A^ 

£„ pk   for negative k 

Rj radius of inner boundary 

Rg radius of outer boundary 

r distance from origin;   a polar coordinate 

Re real part of 

S region between outer and inner boundaries 

a radial stress r 

a tangential stress 

P (a     )r radial stress on outer boundary  (Lg)   for "far" 

point at division point n 

(a  )^ linearly distributed radial stress on outer 

(La)  boundary between 6B   and 6B+x 
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creasing 6 
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Ck imaginary part of A^ 

Ck Ck for negative k 
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(r,z,6) cylindrical coordinates 

a ,an,a   ,T stresses for cylindrical coordinates r e  z zr ' 

v Poisson's ratio 
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SECTION I 

A STUDY OF THE BEHAVIOR 
OF THICK CYLINDRICAL SHELLS 

USING WINKLER CURVED-BEAM THEORY 

CHAPTER 1 

STATIC LOADING OF 
THICK CIRCULAR ARCHES AND  SHELLS 

Note:    The analysis which follows is written to pertain 
directly to a circular arch with a plane of symme- 
try and loaded symmetrically such that it deforms 
in its original plane.    The analysis  is  immediately 
adaptable to a unit length of a long cylindrical 
shell undergoing plane strain. 

General 

In the analysis of curved beams or segments of long cylin- 
drical shells, simplifying assumptions as to the geometry of 
deformation are ordinarily made. These assumptions allow one to 
obtain relatively simple expressions for the stresses and de- 
formations resulting from loads. For design purposes the theory 
has the advantage that the significant quantities, normal force, 
shearing force and bending moment are easily computed. 

The theory, commonly referred to as the Winkler curved-beam 
theory, is well known.  It predicts tangential stresses with 
remarkable accuracy except in the neighborhoods of concentrated 
loads1 .  There the more powerful methods of the theory of elas- 
ticity are necessary to determine the stresses. The advantages 
in the use of the theory are its simplicity and immediate appli- 
cability to design; one disadvantage is that, as in straight- 
beam theory, radial stresses are completely disregarded. 

It is the purpose of this discussion to develope and present 
in a usable form the portions of the theory of interest to the 
designer. 

We consider first a segment of a ring with constant curvature 
which is symmetrical with respect to its center plane (x * 0) in 
Fig. 1). 
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axis of  curvature 

Figure 1.    Section of cvrved beam showing 
coordinates and dimensions. 

The usual assumptions of beam theory are made.    Referring 
to Fig.   1,   these are: 

(a) Hooke's  law is valid. 
(b) a     is negligible. 

(c) The effect of radial strain upon the strain due to 
bending is negligible. 

(d) Sections normal to the original centroidal surface before 
deformation are normal to the new centroidal surface 
after deformation. 

(e) Displacements are small and in the plane of the arch. 

The Tangential Strain 

The tangential and radial displacement components of particles 
on the centroidal surface are denoted by v and w respectively,    w 
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is positive in the direction of positive z (outward) and v is 
positive in the direction of increasing 9. It can be shown3 that 
the assumptions lead to the following expressions for v(z) and 
e , the tangential displacement of a particle and the tangential 

9 
strain of an element at a distance z from the centroidal surface: 

/ »       v(a+2) z dw v(z) "-T-^  -Ida- 

JL ÖL z daw        w 
9       a de   ~ a(a+z)     dea       a+z 

(1-1) 

The radial displacement,  w(z) ,  of a particle a distance z  from 
the centroidal surface is taken equal to the radial displacement 
of the corresponding particle on the centroidal surface;   i.e. 
w(z)   s w. 

The Strain Energy Expression 

The strain energy per unit volume is ^o e , or,   for the arch, 
Eea 8  e 

2 *   in which E is Young's modulus.     (For the plane strain prob- 
o e Eea 

lern,   the strain energy density is    |      or     . ■ a%   in idiich u  is 

Poisson's ratio.    The strain energy, V,  of a portion of the arch 
which subtends the angle a is 

E r01 r 
v s T \    \ ea

Q   (a+z)   dAdö <1-2) d  .)0 JA     8 

Substituting the expression for e from Eq. (1-1) into Eq. (1-2) 
B 

and integrating over the area, 

v-t!r0i!«+w)s+ztw+^,a>6       (i-3) 

In this expression A is the area of the beam cross section and 
Z, the section constant of curved beam theory, is defined by the 
equivalent expressions 

If zdA  _  1 r zadA  _  a r dA   ,   .... 
Z a - — \ —— ; Z ■ —— \ —— ; Z « — \ '—— - 1   (1-4) 

A \afz '    Aa .^ a+z  '    A }  a+z      l  ' 
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The section constant Z is dimensionless and very small.    For 
rings with geometry such that a » z,   the z in the denominator 
of the second of equation   (1-4)   can be disregarded  in comparison 
to a and 

Z w I/aaA. 

in which I is the moment of inertia of the cross section with 
respect to the x axis.  Evaluation of Z for a curved beam of rec- 
tangular cross section and a mean radius to thickness ratio of 3 
reveals that Z ^ .009.  As the mean radius to thickness ratio 
increases Z approaches zero. 

Equation (1-3) gives the strain energy of a curved beam seg- 
ment as a function of its configuration as defined by the dis- 
placement components v and w of particles on the centroidal 
surface.  These displacements are of course functions of 6; i.e.« 
v = v(9) and w ■ w(9) . 

For complete rings and statically indeterminate arches it 
is convenient to have the strain energy expressed as an integral 
in terms of the normal force N(8) and the bending moment M(6) . 
In this form Castigliano's theorem may be used to evaluate re- 
dundant forces and moments and to compute deflections. 

The normal force N(9)is defined to be positive when it is 
tensile and the bending moment M(9) is taken as positive when it 
tends to straighten the arch.  Thus 

EA rdv      „.   dawv N(9) - ^ OedA = E \ e9dA = Si [^ + „ + z(w + ^) ] (1-5) 

M(9) = -\ a zdA = - E \ e zdA - AEZ(w + —r)      (1-6) 
JA 9 ^A 

Expressing Eq.(1-3) in terms of N(0) and M(9) by means of Eqs.(1-5) 
and (1-6), 

As the radius, a, becomes infinite this expression becomes 

■o 

i r ,11* ^ M» 
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the usual strain energy expression for a loaded straight beam. 

The straight beam energy expression is commonly used in 
arch analysis; equation (1-7) is unquestionably more accurate. 

Its use is simplified by the fact that the quantity K(9) - —^—^ 

is independent of 9 in regions where there are no distributed 
tangential loads.  In the regions between concentrated tangential 

M (9) 
loads the quantity N(9) - —^""^ is a constant.  This fact may be 
verified by statics. 

The Equations of Equilibrium 

We cons ;.der now the portion of a curbed beam shown below in 
Fig. 2.  it is loaded at its outer surface by a radial load q(9), 
a tangential load t(9) and by the concentrated forces and moment 
N , Q  and M  at its free end.  The distributed loads are expressed 
e  e     e 

in units of force per unit of arc.  The strain energy V and the 
potential energy of the external loads, Cl,   are given below.  The 
total potential energy of the system is designated by U and U = 
V + H.  The equilibrium equations are obtained from the principle 
of stationary potential energy, 6U = 0. 

Figure 2.  Loaded curved beam section. 
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v-!lC{(f + w,8+z(w + ^)8}d9 

0 . . yqw * fvt - f ^t}Rode - Ne v(a)  - Qe w(a) 

- M   -^1 e a d0 U 
u « v + n 

The tangential displacement v is given a virtual displace- 
ment 6v « eriCe), consistent with the geometrical boundary condx- 
tions, and the corresponding increment in U is computed. 

AU ■   6U +  0(ca) 

6U , Age. C   (|^ ^.w)^'^ - t\    Stride  - N €Ti(a) 
a    J0 d9 J0 A e 

In this expression and what follows differentiation of r\ with 
respect to 6   is denoted by V. 

In order for 6U to vanish 

AE djv . dw. . fL, . o n  M 
a W + de' +aH: " 0 (1-8) 

and N -^(£ + w)L a-9) e  a de    |e«a 

The radial displacement w is now varied by 6w « eTi(e) 
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AE f"r*dv 

'o 

.a 

u + AU - || ^ {(di"+w+ €Tl)a+ z^ + ^ + j^ + eO^de 

-U^.,   +^.f ,f+cV)K de 

- N    v(a)   - Q  (w+en) 
e e 

O^a 

e.dw , 

e=a 

6U = AEe rar/dv        . nl        d*w, ,        daw      i 
\ i(d? + W)T1 + z(w + d^)T1 + z(w + f5r)^}de 

rar ct     i Me 
- ^  (qcn - ^-cri'JRode  - QeeTi(a)   - -^-nsTi'Ca) 

For  6U to vanish 

d4 w  >%d
aw      1 .dv   .  qRft a cR, dt 

de*  de3     z de    AEZ AEZ de 

M  = 

Q_ = 

AEZ(w+0) 
e=a 

ctR^ 
a e=a 

AEZ .dw ^ d3w 
a lde + de^ e^a 

(1-10) 

(1-11) 

(1-12) 

Equations (1-8) through (1-12) are thus the equilibrium equa- 
tions and the boundary conditions for the loaded arch. 

Equation (1-8) states that 

M d__,dv . . Si 
a    de lde ' a   ' 

dv 
If t a 0 in a recion then -r- + w is a constant in  that region, 

de 
From equations   (1-5)   and   (1-6) 

N(e, .15141 =M(|Z+W). 
a     a  de 

M (e) 
Thus N(e) - —i—*" is a constant in regions where there is no 

tangential load. 
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Equation (1-9) simply states that the normal force at the 
end, N . equals AE times the strain of the centroidal surface. 

e 

The solution to any equilibrium problem of a ring or arch 
so loaded thus may be obtained by solving for the functions v 
and u  from equations (1-8) and (1-10) subject to the geometrical 
boundary conditions and the natural boundary conditions given by 
equations (1-9), (1-11), and (1-12) . 

The Tangential Stress 

Once v and w are known, oQ may be computed from oQ ■ Ee 6 9     0 
with e given by equation (1-1).  It is convenient, however, to 

9 
have an expression for a  in terms of the normal force and bend- 

ing moment at any section, a    « Ee or 
9     9 

dv 1    z   daw rdv ^1 z   d^w w "] 
9 " Ld9 a " a(a-t-z) d9a a+zj 

„rl dv z   daw w     zw     zw *) 
La d9 a(a+z) d0^ a+z  a(a+z)   a(a+z)J 

1 dv w    z   . d'w. „r 1 dv  w    z   ,   «• w. i 
■ E — -rr + — - —; r(w + TTa") La d9  a  a (a+z)    d9a J 

From equations (1-5) and (1-6) 

The Complete Ring with Radial Loads 

We consider now a complete ring loaded at its outer surface 
by radial and tangential loads whose resultant is zero. Castig- 
liano's theorem and the principle of superposition permit one to 
determine the normal and shear forces and the bending moment at 
any section and to analyze deflections. 

We consider first the ring shown below loaded by only a con- 
centrated force P at the angle a.  P is positive in vfrat follows 
when as shown. 
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Figure 3.  Complete ring fixed at 0 = 0 and 
with radial load at 6 = a 

The ring is, of course, not in equilibrium under the action 
of P and, for convenience, we imagine a cross section at 9 = 0 
to be fixed by external supports.  The first problem considered 
is that of determining the redundant forces and moment N, Q and 
M at 9 = +0 due to ? at a.  Having these quantities due to a 
concentrated load at a, they may be determined for any system of 
concentrated radial loads by superposition.  A distributed radial 
load may be treated by replacing it with an equivalent system of 
concentrated loads.  If the loading system is self equilibrating 
the external supports required at 0 = 0 to maintain equilibrium 
vanish. 

The expressions for N(e) and M(e) at any angle 6 due to P 
at a are given below. 

N(e) = N Cos 0 - Q Sin 0 for 0 < 0 < a 

M(0) = M - Na(l-Cos 0) - Qa Sin 0 for 0 < 0 <i a 

N(0) = N Cos 0 - Q Sin 0 - P Sin(0-a) for a < 0 s 2TT 

M(0) - M - Na(l-Cos 0) - Qa Sin 0 - Pa Sin(e-a) 
for a ^ 0 s 2TT 

- 9 - 



The strain energy from equation (1-7) is thus 

V = 2EA ^ {a(N "^ + Iz ^-Na^-C08 9)-Qa sin Q]3} de 

2TT 
+ 2EÄ ^  {a(N-^)+~{M-Na(l-Cos 9)-Qa Sin e-Pa Sin (q-a) ]a jde 

a 

Since there is no displacement or rotation of the cross section 
upon which M, N and Q act, it follows that 

av „ av = dV ^ 

Setting these derivatives of V equal  to  zero and simplifying,   one 
obtains  the three  influence functions  for M,   N and Q given below. 

M ,01 , x „. (1-Cos g) 
Pa 2n 2n(l+Z) 

| =   (—--  l)Sin a (1-14) 

Q Sir^a       ,        a      Sin 2a.   Cos a 
P 2n 2 4 TT 

It  is to be noted that N and Q are completely  independent of 
the  thickness of  the ring.     Since Z  is very small,  M also  is 
essentially unaffected by the thickness  to  radius ratio.     This 
fact is important since many solutions based on ordinary arch 
theory exist.     They can be used with great accuracy for determin- 
ing  the redundant reactions due to radial  loads. 

Knowing M,  N and Q one may draw complete shear and bending 
moment diagrams  for  the ring.     Equation   (1-13)  will give o    at 

any cross  section.     Elementary theory  is ordinarily used  for comput- 
ing  shearing stresses. 

To facilitate computation,   the table of  influence coefficients 
is presented in Table  I  which follows. 
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TABLE I* 

M, N, and Q at 9 « +0 Due to 
P at a 

Q/P N/P M/Pa 

0 -1.00000 .000000 .000000 
10 -.985089 -.168825 -.166407 
20 -.941922 -.323019 -.313421 
30 -.873434 -.458333 -.437011 
40 -.783231 -.571367 -.534132 
50 -.675431 -.659649 -.602797 
60 -.554499 -.721688 -.642110 
70 -.425073 -.756975 -.652254 
80 -.291797 -.765962 -.634444 
90 -.159155 -.750000 -.590845 

100 -.031324 -.711250 -.524458 
110 .087957 -.652564 -.438975 
120 .195501 -.577350 -.338618 
130 .288750 -.489417 -.227960 
140 .365836 -.392815 -.111740 
150 .425604 -.291667 .005320 
160 .467617 -.190011 .118700 
170 .492123 -.091648 .224244 
180 .500000 .000000 .318310 
190 .492685 .082001 .397892 
200 .472075 .152009 .460721 
210 .440421 .208333 .505321 
220 .400209 .249973 .531048 
230 .354038 .276627 .538085 
240 .304499 .288675 .527408 
250 .254063 .287128 .500717 
260 .204973 .273558 .460350 
270 .159155 .250000 .409155 
280 .118148 .218846 .350364 
290 .083053 .182718 .287439 
300 .054499 .144338 .223915 
310 .032644 .106395 .163247 
320 .017187 .071421 .108656 
330 .007409 .041667 .062969 
340 .002229 .019001 .028599 
350 .000281 .004824 .007241 
360 .000000 .000000 .000000 

*This table was computed from equations (1-14) with Z set 
equal to zero. 
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In the computation of this table, Z was set equal to zero 
since it is always small in comparison to unity.  Unfortunately, 
when tangential loads are considered, the thickness to radius ratio 
is of significance and influence tables are necessary for each 
thickness to radius ratio. 

The Complete Ring with Tangential Loads 

Referring to Figure (3) and replacing the radial load P at 
a with a concentrated tangential load T (positive in the direction 
of increasing 9) at a then 

N(e) = N Cos 6 - Q Sin 9 for 0 < 8 < a 

M(e) = M-Na(l-Cos 6) - Qa Sin 9 for 0 < 9^a 

N(9) = N Cos 9 - Q Sin 9 - T Cos(9-a) for a < 9 ^ 2TT 

M(9) = M-Na(l-Cos 8) - Qa Sin 9 + Tc + Ta[1-Cos (9-a)] 
for a £ 9 s 2TT 

The strain energy by equation (1-7) is thus 

a 
2EAV = {   |a(N-^)2 + —  [M-Na(l-Cos 9)-Qa Sin 9]a}d0 

+ \   |arN-|-T(l+c/a)] + ~ [M-NaU-Cos 9)-Qa Sin 9 
a 

+ Tc + Ta - Ta Cos (9-a) "1 |d8 

Again, since there is no displacement or rotation of the 
cross section upon which M, N and Q act 

ÖV „ dV _ ÖV _ 
ÖM ^ dN ^ dQ "  * 

Setting these derivatives of V equal to zero and simplif ng 

M 1   fZ  Sin g       c  „. 
K = n  LlTHir + 7 Sin a + TT Cos a 

+ |(l-Cosa)   - n(l^)   +f^] 

T      n [(2 + I)Sin a +  ("-a/2) Coi a] 
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f " - n41*!' !1-Co• a) - a-fe)Sin a 

The influence tables presented below were computed using 

7"^ ~ 2 
RxR   h 

c « ^2. 1 ■ -r.  Tables are presented for thickness, h, to mean 

radius, a, ratios of -r, —, —, and —.  Linear interpolation may 
J  4  5      o 

be used with accuracy for intermediate values. 
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TABLE II 

M, N, and Q at 9 s 

T at a.  h/a 
+0 Due to 

• 1/3 

aL Q/T N/T M/Ta 

0 .000000 1.000000 -.166667 
10 -.174466 .994301 -.167337 
20 -.345415 .960066 -.195712 
30 -.508086 .899960 -.248320 
40 -.658249 .817332 -.321053 
50 -.792304 .716071 -.409341 
60 -.907369 .600443 -.508326 
70 -1.001323 .474925 -.613051 
80 -1.072837 .344042 -.718640 
90 -1.121362 .212207 -.820464 

100 -1.147098 .083570 -.914297 
110 -1.150939 -.038105 -.996452 
120 -1.134393 -.149557 -1.063881 
130 -1.099485 -.248110 -1.114263 
140 -1.048656 -.331735 -1.146046 
150 -.984637 -.399078 -1.158469 
160 -.910338 -.449473 -1.151547 
170 -.828729 -.482910 -1.126030 
180 -.742723 -.500000 -1.083333 
190 -.655081 -.501897 -1.025444 
200 -.568318 -.490220 -.954812 
210 -.484637 -.466947 -.874223 
220 -.405868 -.434310 -.786665 
230 -.333441 -.394677 -.695191 
240 -.268367 -.350443 -.602785 
250 -.211246 -.303915 -.512235 
260 -.162290 -.257218 -.426017 
270 -.121361 -.212207 -.346203 
280 -.088029 -.170394 -.274379 
290 -.061630 -.132905 -.211595 
300 -.041343 -.100443 -.158341 
310 -.026260 -.073284 -.114538 
320 -.015461 -.051288 -.079569 
330 -.008086 -.033934 -.052322 
340 -.003395 -.020374 -.031262 
350 -.000818 -.009493 -.014522 
360 .000000 .000000 .000000 
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TABLE III 

M, N, and Q at 6 * +0 Due to 
T at a. h/a ■ 1/4 

a0 Q/T N/T M/Ta 

0 .000000 1.000000 -.125000 
10 -.174265 .991998 -.129244 
20 -.344615 .955530 -.161119 
30 -.506310 .893328 -.217083 
40 -.655146 .808807 -.292961 
50 -.787567 .705911 -.384121 
60 -.900737 .588957 -.485654 
70 -.992596 .462462 -.592562 
80 -1.061877 .330981 -.699936 
90 -1.108099 .198944 -.803129 

100 -1.131532 .070509 -.897909 
110 -1.133140 -.050568 -.980593 
120 -1.114498 -.161043 -1.048154 
130 -1.077697 -.258270 -1.098302 
140 -1.025233 -.340260 -1.129528 
150 -.959888 -.405710 -1.141121 
160 -.884612 -.454009 -1.133158 
170 -.802405 -.485213 -1.106456 
180 -.716197 -.500000 -1.062500 
190 -.628756 -.499594 -1.003352 
200 -.542592 -.485684 -.931534 
210 -.459888 -.460316 -.849904 
220 -.382445 -.425785 -.761517 
230 -.311653 -.384517 -.669485 
240 -.248473 -.jjb957 -.3/6846 
250 -.193447 -.291452 -.486427 
260 -.146724 -.244157 -.400740 
270 -.108099 -.198944 -.321871 
280 -.077069 -.157333 -.251415 
290 -.052904 -.120442 -.190417 
300 -.034712 -.088957 -.139346 
310 -.021522 -.063124 -.098091 
320 -.012358 -.042762 -.065995 
330 -.006309 -.027303 -.041892 
340 -.002595 -.015838 -.024188 
350 -.000617 -.007190 -.010948 
360 .000000 .000000 .000000 
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TABLE IV 

M, N. and Q at 9 = +0 Due to 
T at a. h/a « 1/5 

a0 Q/T N/T M/Ta 
0 .000000 1.000000 -.100000 

10 -.174144 .990616 -.106373 
20 -.344135 .952809 -.140333 
30 -.505243 .889350 -.198295 
40 -.653284 .803692 -.276047 
50 -.784724 .699815 -.368919 
60 -.896758 .582065 -.471973 
70 -.987360 .454984 -.580184 
80 -1.055301 .323144 -.688625 
90 -1.100141 .190986 -.792637 

100 -1.122192 .062672 -.887986 
110 -1.122460 -.058046 -.970992 
120 -1.102562 -.167935 -1.038640 
130 -1.064624 -.264366 -1.088656 
140 -1.011179 -.345375 -1.119558 
150 -.945038 -.409689 -1.130667 
160 -.869177 -.456730 -1.122094 
170 -.786610 -.486595 -1.094695 
180 -.70028? -.500000 -1.050000 
190 -.612962 -.498213 -.990112 
200 -.527157 -.482962 -.917599 
210 -.445038 -.456337 -.835359 
220 -.368391 -.420670 -.746486 
230 -.298580 -.378422 -.654131 
240 -.236536 -.332065 -.561360 
250 -.182768 -.283974 -.471028 
260 -.137384 -.236320 -.385662 
270 -.100141 -.190986 -.307363 
280 -.070493 -.149496 -.237727 
290 -.047668 -.112964 -.177796 
300 -.030733 -.082065 -.128027 
310 -.018680 -.057028 -.088293 
320 -.010496 -.037647 -.057909 
330 -.005243 -.023324 -.035679 
340 -.002115 -.013116 -.019975 
350 -.000496 -.005809 -.008820 
360 .000000 .000000 .000000 
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TABLE V 

M, N, and Q at 6 * -«-0 Due to 
T at a. h/a = 1/8 

a0 Q/T N/T M/Ta 
0 .000000 1.000000 -.062500 

10 -.173963 .988544 -.072044 
20 -.343415 .948726 -.109110 
30 -.503644 .883381 -.170051 
40 -.650492 .796019 -.250595 
50 -.780460 .690671 -.346020 
60 -.890790 .571728 -.451341 
70 -.979506 .443768 -.561497 
80 -1.045437 .311389 -.671533 
90 -1.088204 .179049 -.776773 

100 -1.108183 .05C917 -.872977 
110 -1.106441 -.069263 -.956472 
120 -1.084657 -.178272 -1.024258 
130 -1.045015 -.273510 -1.074090 
140 -.990098 -.353048 -1.104523 
150 -.922764 -.415657 -1.114922 
160 -.846023 -.460813 -1.105454 
170 -.762918 -.488668 -1.077033 
180 -.676408 -.500000 -1.031250 
190 -.589270 -.496140 -.970275 
200 -.504003 -.478880 -.896739 
210 -.422764 -.450369 -.813603 
220 -.347311 -.412997 -.724022 
230 -.278970 -.369278 -.631197 
240 -.218631 -.321728 -.538242 
250 -.166749 -.272757 -.448048 
260 -.123375 -.224565 -.363171 
270 -.088204 -.179049 -.285727 
280 -.060629 -.137741 -.217319 
290 -.039814 -.101747 -.158983 
300 -.024765 -.071728 -.111159 
310 -.014416 -.047884 -.073692 
320 -.007704 -.029975 -.045861 
330 -.003644 -.017356 -.026424 
340 -.001395 -.009033 -.013698 
350 -.000315 -.003736 -.005649 
360 .000000 .000000 .000000 
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Example Problems 

A. As the first example let us determine the value of M, N 
and Q at 6 » 0 in a ring loaded as shown below; 

Ring with concentrated loads 

Referring to Table I, N, N and Q due to the load P at 90° are 

N ■ -.5908 Pa 

N » -.7500 P 

Q » -.1592 P 

The values due to 2T at 180° are 

M = 2 (.3183) Ta 

N = 2(.0000) T 

Q « 2(.5000) T 

The values due to P at 270° are 

M - +.4092 Pa 

N » +.2500 P 

Q - +.1592 P 
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Due to T at 90°   from Table II 

M =  -.8205 Ta 

N =  +.2122  T 

Q =  -1.1214  T 

Due to -T at 270° from Table II, 

M = -.3462 (-Ta) 

N = -.2122 (-T) 

Q = -.1214 (-T) 

By superposition 

M =  -.1816  Pa  +.1623  Ta 

N =  -.5P +   .4144 T 

Q =  0. 

B.    As  a  second example,   we consider the ring  loaded as  shown 
below. 

W Sin a  IV   da 

-q = W Sin a 

q =  -W Sin a 

Ring with distributed radial load. 
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This distributed radial  load could be replaced by an equivalent 
set cf  concentrated  loads  and Table  I could be used.     In this  case, 
however,   the  loading  function  is simple and M,   N and Q may be 
easily computed  from equations   (1-14)   by  integration.     For  example, 
from equation   (1-14),   neglecting Z, 

M =  Pa Ifc- -   l)Sin a  + 
L2TT 

1-Cos a 
2TT   " ] 

Replacing P by W Sin a   RQ   da  from 0  to rr  and by -W Sin a   Ro   da 
from n   to   2TT 

dM = W Sina     Ro   da  aRj- -  l)Sin a  +  1"C^ al 

Thus 
M = Wl^a ^[(^ -  l)Sin a +  ^^ a]sin a da 

2n. 
- WR0a \     ^ -   l)Sin a  4-  ^ aJsin a da 

Integrating 
2 

M =  -WRQ a (TT/4  - —) . 

N and Q may be computed in a similar fashion. 

Radial Displacements due to Radial Loads 

We consider the complete ring shown below. Fig. 4, with a 
radial load P, taken positive inward as shown, at a, and a concen- 
trated radial load R at 6. 

P 

Figure 4. Ring with radial loads at 9=a and e=6 
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M,  N and Q are,   as before,   the redundant reactions at 9  = +0. 
Then for 0  ^ a 

N(9)   * N Cos 6 - Q Sin 8  for 0 < 9 < S 

M(9)   = M - Na(l-Cos 9)   - Qa Sin 8   for  0 <  9  <   0 

N(9)   = N Cos 6  - Q Sin 9  -  R Sin(9-B)   for  ß <  9 < a 

M(9)   = M - Na(l-Cos 9)   - Qa Sin 9  - Ra Sin(9-B)   for 
B  ^  9  s a 

N(9)   = N Cos 9  -  Q Sin 9   -  R Sin(9-B)   -  P Sin(9-a)   for 
a < 9  s.  2TT 

M(9)   = M - Na(l-Cos 9)   -  Qa Sin 9  -  Ra Sin(9-B)   - Pa Sin(q-a) 
for a -s 9  ^  2n 

The strain energy is  then given by 
B 

2EAV =  \  {a(N--)   + jrr [M-NaCl-Cos 9)-Qa Sin e] }de 

+ {   l81^-")2^ [M-Na(l-Cos 9)-Qa Sin 9-Ra Sin(9-ß)] \<iQ 
ß 

r2TTr M 1    r 
+ \     |a(N--)a+ -=r- lM-Na(l-Cos 9)-Qa Sin Q-Ra Sin(9-B) 

a 

- Pa Sin (9-a)] \dQ 

The radial deflection,   w,   at B  due to P at a equals •—■) ; 

w(B,  a)   = —) 
dR R=0 

Performing this differentiation and integration and  solving 

for rrr with R set equal to zero, 
c)R 

EAZ w(B,a) = (M-Na) (Cos ß-1) + (TT-ß/2)Na Sin ß 

+ (TT-B/2) Qa Cos B + ^ Sin B 

Pa 
+ (n-a/2) Pa Cos(ß-a) + — Cos B Sin a. 
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Substituting for M, N and Q their values from equations (1-14) 
and simplifying 

EAZ  /0  .   (Cos g-l)(1-Cos B)   B,    a. ^  /0  x 

+ |^ cos 0 Sin a -Sin Pn
8ina -.(n-f) Sin ^Coa  a 

(1-16) 
Equation (1-16) is valid for the radial deflection at ß due 

to a radial load, P, at a with 0 £ a.  The computations were re- 
peated for the case in which 0 ^ a and in this case 

EAZ  /Q  x   (Cos 0-1) (1-Cos g)   a .  0/ox-,Ä /Q  v — w(0,a) = ■» 5^^  + •^(TT-0/2)Cos(0-a) 

+ S- Cos a Sin 0 - Sin ^  a - (n.0/2) Sin ^  a 

(1-17) 

Equations (1-16) and (1-17) are the complete influence function 
for the radial displacement due to radial loads for the entire ring. 
It is to be noted that w(0,a) = w(a,0); i.e., if a and 0 are inter- 
changed in either equation (1-16) or (1-17) the equations become 
identical. Also, from Fig. 4 it is obvious that w(0,a) ■ 
w(2TT-0,2rr-a) . 

From equation (1-17) a complete set of influence coefficients 
with 10° increments and with Z on the right hand side set equal to 
zero has been computed.  By omitting 0° and 360°, this set is a 
35 x 35 array, symmetrical with respect to both diagonals. 

The following program, written in Fortran II, will generate 
this matrix.  The deflection due to any radial loading may be com- 
puted by constructing a column loading matrix and multiplying it by 
the influence matrix. 
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DIMENSION P(35,35).JJ(35) 
DO 1 1=10,180,10 
K=I/10 
ALPHA»I 
ALPHA=ALPHA*.017453293 
SA=SINF(ALPHA) 
CA=COSF(ALPHA) 
IJ*360-I 
DO 1 J=I,IJ,10 
L=J/10 
BETA=J 
BETA=BETA*.017453293 
SB=SINF(BETA) 
C3=C0SF(BETA) 
COSAB=COSF (ALPHA-BETA) 

1 OP (K# L) =»- (CB-1.) * (CA-1.) *. 15915494+ (. 5-BETA*. 079577471) ♦ (ALPHA* 
1C0SAB-SA*CB)+(ALPHA*CA-SA)*SB*.079577471 
DO 2 1=1,17 
IJ=35-I 
K=36-I 
DO 2 J=I,IJ 
M=36-J 

2 P(M/K)=P(I/J) 
DO 3 1=2,35 
IJ=I-1 
DO 3 J=1,IJ 

3 P(I#J)=P(J#I) 
4 FORMAT(I3,1HO,6X,7F10.6) 
5 FORMAT (5H ) 
6 FORMAT (15HBETA . ALPHA   , 6 (13, 7X) , 13) 
7 FORMAT (12H       ) 

Ml=l 
M2=7 
DO 9 N=l,5 
PUNCH 5 
DO 8 I=M1,M2 

8 JJ(I)=I*10 
PUNCH 6, (JJ(I),I=M1,M2) 
PUNCH 7 
PUNCH 4, (J, (P(I,J),I=M1,M2),J=1,35) 
M1=M2+1 

9 M2=M2+7 
END 
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Radial Displacements due to Tangential Loads 

We now consider the complete ring loaded as shown below in 
Fig. 5.  It carries a concentrated tangential load, T, at the 
angle a and a concentrated radial load, R, at the angle 0 with 
a ^ ß.  The radial deflection at 0 due to T at a equals dV/dR 
with R set equal to 0. 

Figure 5. Ring with radial load at ß and 
tangential load at a< 

The values of M(9) and N(6) at any angle 6 are as given below. 

N(e) - N Cos 9 - Q Sin 9 for 0 < 8 < 6 

M(9) » M - Na(l-Cos 9) - Qa Sin 9 fou 0 < 9 ^ e 

N(9) * N Cos 9 - Q Sin 9 - R Sin(9-ß) for B < 9 < a 

M(9) - M - Na(l-Cos 9) - Qa Sin 9 - Ra Sin(9-0) for 
0 ^ 9 ^ a 
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Then 

N(9)   = N Cos 9  - Q Sin 6  - R Sin(9-8)   - T Co8(e-a)   for 
a <  9  ^  2Tr 

M(9)   ■ M - Na(l-Cose)   - Qa Sin 9   -  Ra  Sin(9-B)   -I- Tc 

+ Ta[l-Co8(9-a) ]  for a s 9 ^  2TT. 

2EAV = \   '[a(N--)a+ — pM-Nad-Cos 9) - Qa Sin 9] }d9 

+ \ la(M-Ä)a+ -r [M-Na(l-Cos 9)- Qa Sin 8 - Ra Sin(9-0)1 }de 
a - - ~ 

r 2n a  ,  _ 
+ \  {a| N- -•-T(l+ 7y + "5" lM-Na(l-C08 9) - Qa Sin 9 

a 

- Ra Sin(9-B) + Tc + Ta - Ta Co8(9-a)l } dB 

Differentiating the above expression for V with respect to 
R, setting R = 0, substituting the values of M, N and Q from 
equations (1-15) , and simplifying, there results, 

Ir If'   ■ frv(B>a) = (1+f) <1-(I/2T'' <l-coa B> 
Sin a   ..  „      «x # ~ /». rSin B Sin a ,1   , x + IMUZT 

(1-Co8 ^ + ^/2)[ * (T+ c/a) 

+ (l-a/2n)Sin(0-a)-(l+c/a) (l-Cos a)Co° P] 

(1-18) 

- (l+c/a)!"5*" P(l-Co8 a)+Cos(B-a) - Cos 0] 

- (TT-a/2)Sin(0-a) + 7—Sin 0 Sin a. 

Equation (1-18) is valid for computation of radial deflections 
at the angle 0 resulting from a tangential load, T. at the angle a 
with a ^ 0. The problem was reworked with the loading given in 
Fig. 5 but with 0 ^ a.  The final result only is presented here. 
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ir w(3,a) « (Cos 0-l)[2^(1 + 7) " 2n(l+Z)J 

- (TT -^[^—-^(l+c/a) (l-Cos a) - ^- Sin(a-9) 

Sin a Sin ß ,1 
TT 

(| +c/a)]- ^iS-ß-d+c/a) (l-Cos a) 

+ ~- Sin ß Sin a (1-19) 
4TT 

Equations (1-18) and (1-19) represent the entire influence 
function for a complete ring carrying tangential loads on its 
outer surface.  In this case w(ß,a) ?* w(a,9) since the radial 
displacement at ß due to a tangential load at a is not equal to 
the radial displacement at a due to a tangential load at 8. 
There is, however, a different type of symmetry.  Consideration 
of Pig. 5 reveals that w(ß,a) = -w(2TT-ß, 2n-a) . 

The following program, written in Fortran II, will generate 
a complete set of influence coefficients for radial displacements 
due to tangential loads for 10° increments.  In the program, c was 
set equal to h/2 and h/a may be assigned any value.  Ihe matrix 
is antisymmetrical with respect to its center element, a fact 
which was used to shorten the program.  The value of the radial 
deflection at each 10° interval may be obtained by constructing 
a loading column matrix and multiplying it by the influence 
matrix. 
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DIMENSION P(35,35),JJ(35) 
1 READ 8.TOR 

PUNCH 9,TOR 
P(18,18)=0. 
CONST=l.-»-.5*TOR 
HALF=(l.+TOR)*.5 
Z=l./((l./TOR)*LOGF((2.+TOR)/(2.-TOR))) 
M=l 
DO 3 1=10,340,10 
IP1=I+10 
GO TO 4 

2 DO 3 J=IP1,350,10 
GO TO 5 

3 CONTINUE 
GO TO 6 

4 K=I/10 
Il=36-K 
ALPHA-I 
ALPHA=ALPHA*.017453293 
SA=SINF(ALPHA) 
CA=1.-COSE(ALPHA) 
ALPH2=ALPHA*. 5 
GO TO   (2,5) ,M 

5 L=J/10 
I2=36-L 
BErA=J 
BETA=BETA*.017453293 
SB-SINF (BETA) 
CB=C0SF (BETA) 
CB1=1.-CB 
CBCA=CB*CA*CONST 
SBSA=SB*SA 
SBMA=SINF (BETA-ALPHA) 
PMB=3.1415927-BETA*.5 

OP (K#L)= ( (SA*. 5*Z-ALPH2*CONST) *CB1+ (HALF*SBSA-ALPH2*SBMA-CBCA) * 
1PMB- (CONST*CA-ALPH2*SA) *SB*. 5) *. 31830989 
P(I1,I2)=S-P(K,L) 
GO TO   (3,7),M 

6 M=2 
DO  7   1=10,170,10 
J=I 
GO TO 4 

7 CONTINUE 
8 FORMAT(E15.8) 
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9 FORMAT (37HRATI0 OF THICKNESS TO MEAN RADIUS IS ,F12.8) 
10 FORMAT (5H ) 
11 FORMAT (15HBETA . ALPHA   , 6 (13,7X) , 13) 
12 FORMAT (12H       ) 
13 FORMAT(I3,1HO,6X.7F10.6) 

Ml«l 
M2«7 
DO 15 N-1,5 
PUNCH 10 
DO 14 I=M1,M2 

14 JJ(I)«I*10 
PUNCH 11, (JJ(I) ,I-M1,M2) 
PUNCH 12 
PUNCH 13, (J, (P(I#J),I«Ml,M2),J=1,35) 
Ml=M2+l 

15 M2=M2+7 
GO TO 1 
END 
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Summary 

Deep underground blast-resistant cylindrical structures can 
be most easily designed by considering  static loads which  are 
adjusted by a factor  to compensate for dynamic effects.     The 
analysis presented permits one to compute stresses and radial 
displacements in thick cylindrical   shells resulting from any 
exterior  static  loading. 
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CHAPTER 2 

DYNAMIC LOADING OF 
THICK CIRCULAR ARCHES AND SHELLS 

Kinetic Energy Expression 

The expression for the kinetic energy of an arch Megment 
deforming in its plane is readily obtained by integration.    De- 
noting the kinetic energy by E* , 

0  A 

in which a is the subtended angle, p is the mass per unit volume, 
and w and v are now functions of time as well as of z. 

Substituting for v(z,t) from equation (1-1), letting w(z,t) ■ 
w(t) and integrating with respect to z over the area, 

In this expression I is the moment of inertia of the cross 
section with respect to the x axis (Fig. 1) , and J is the third 
moment of the area with respect to the same axis; i.e., 

I « ^ z8dA;  J « ^ ^dA. 
A A 

J will be zero for cross sections having two axes of symmetry. 

Free Vibrations 

The equations of motion of a thick circular ring segment de- 
forming in its plane may be obtained readily from Hamilton's 
principle, 

öWE^-V) dt ■ 0. 
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With Ek from equation (1-20) and V from equation (1-3) this becomes 

+ ii= <lr - f^'ä- f e+w'ä- fr<-f^'a}d«^ ■;, 
With the notation 

I' = l/aaA and J' = J/a»A 

the Euler equations of this integral are 

a+3r+J')|^-(2I'+J')|^-^(f!v    +^)=o     ,1-22, 
and 

)*w_ Qaa 

09*     EZ 
u +J 'ae^t8 +   dea     EZ   BF + wu +z, + z 99 

It should be noted that a solution of equations   (1-22)   and 
(1-23)   is 

v = 0 

w = qsin j  /(1+Z)- + CaCos -^(l+Z)- (1-24) 

in which C} and Ca are arbitrary constants.  This solution repre- 
sents a motion such that the ring remains circular and deforms with 
time with a circular frequency of 

«Jo «■^(1+Z) E/p 

Thus when — V (1+Z) E/p increases by an amount of 2TT, the ring 
cl 

undergoes one cycle of this motion.  The period of this motion is 

^ - -*=*  . (1-25) 

The duration of a transient load may be conveniently expressed 
in units of T0. 
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In what follows we will be interested in the complete ring and 
in motion which is symmetrical at all times to the axis 9=0; thus 
we assume the following solution to equations (1-22) and (1-23). 

w = Cos n9 Sin *— VE/Q 
a (1-26) 

v « r Sin nQ Sin ^— VE/O 

In equations (1-26) n must be an integer to satisfy the periodicity 

requirements on v and w, ^-VE/p is the circular frequency üü, and r 

is the ratio of the amplitude of the displacement v to that of w. 
Substituting equations (1-26) into (1-22) and (1-23) 

[(21'+ J'jnpa-n] + rfp3 (1+31 ,+J')-na] = 0 (1-27) 

rz(na-l)a-pa + l -   (I'+J'Jp'n3] + rrn-(2l/+J/)pan] «  0 
J J   (1-28) 

For equations (1-26) to be a solution tta* equations (1-22) and (1-23) , 
it is necessary that the determinant of the homogeneous equations 
(1-27) and (1-28) vanish.  Setting this determinant equal to zero 
yields 

^{fu'+j'-r3) + (i+3i/+j/) • 1} 

-pa{(l+3l'+J')[(n
a-l)a+ |] + -^l^- n*- |(2I'+J'- |)n

a} 

a 
+ na (na-l)  - 0 (1-29) 

Equation (1-29) may be used to compute the natural fre- 
quencies of vibrations of complete thick rings for each mode, 
n=0,1, 2,... ,<».  For n=s0 it yields 

pa = 1 + Z 

the motion described by equations (1-24) .  For n=l it yields but 
one value of pa, 

Pa   - l+4I/+2J/-I/a   ' 
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For n^2, equation (1-29) yields two values of pa for each integer 
n. The higher value represents the dimensionless circular fre- 
quency of a deformation which is primarily extensional and the 
lesser value of pa is that of a deformation which is primarily 
flexural. 

Equation (1-29) is rigorously consistent with the Winkler 
assumptions; it thus includes the effect of "rotary inertia" but 
not the effect of shearing deform;tion.  Barer? derived a similar 
equation for the frequencies of thin rings which accounts for 
the coupling between the extensional and flexural motions.  For 
thin rings Love4 cites the formulas 

uü8 = S(1+n8) 
, ma 

and a 

a _ El na(na-l) 
*   ma*   na+l 

for extensional and flexural vibrations respectively.  Here uu, A, 
E, I and n denote the same quantities as in this paper and m is 
the mass per unit length of centerline.  Equation (1-29) includes 
that of Baron and those cited by Love as special cases. 

A review and survey of the implications of the analysis pre- 
. .ted is in order.  Eqi ;,tions (1-22) and (1-23) are the equations 
of motion.  Solutions of the form of equations (1-26) exist pro- 
vided equations (1-27) and (1-28) are satisfied.  Nontrivial 
solutions to equations (1-27) and (1-28) exist for each integer 
value of n provided equation (1-29) is satisfied.  For both n = 0 
and n ■ 1 there is a value of pa which satisfies equation (1-29). 
For n > 1 there are two values of pa which are roots of equation 
(1-29).  In what follows these two values will be designated as 
pa and pa where, arbitrarily, pa is the lesser and pa is the 
greater.  For each value of pa either of equations (1-27) or 
(1-28) will yield a value of r.  For pa ■ pj the value of r will 
be designated as rB; for p

a = pj the value of r will be called rn. 
For computational purposes the simpler equation for rn will be 
used. 

. n-(2l^)np; (1.30) 

pj (l+ai'+J'J-n3 

In the following analysis, which is meant to pertain to a 
segment of a long thick cylindrical shell, J' will be set equal 
to zero and rn will be given by 

_ n(l-2rrf) 
n " pj (1+31 )-na  * 
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Since the differential equations of motion are linear, solu- 
tions may be summed and the resultant normalized expressions for 
w and v may be written as 

00 

w = Sinuü0t + Cose  Sinu^t    + )Cosng (Sinuu, t+Sinuu,, t) 
2 

00 

v = ^   Sine   Sinu^t + Y Sin ne (rBSinu)B t-r,, Sinu)B t) . 
2 

The ID'S in these equations are related to the p's, of course, 
by 

and UUQ and uul are written as (D0 and u^ so that consistently the 
uL)n 's are the frequencies of the motions which are primarily ex- 
tensional. 

GENERALIZED COORDINATES AND THE LAGRANGIAN FUNCTION 

Knowing the modes of vibration and their associated frequen- 
cies it is now possible to proceed with the problem of the response 
of the ring to the time-dependent loads.  The generalized coordi- 
nates will be designated, following Baron3 , by qB (t) and qn (t) in 
solutions of the form 

00 

w = Y [q, (t) + q, (t)]cos ne 

(1-31) 
00 

v = y [^q, (t) + i.q. (t)]sin ne 

in which it is understood that qo (t) = qx (t) «0. 

Substitutir^ the expressions for w and v, equations (1-31) , 
into equation (1-20) , letting a = 2TT# and utilizing the orthogon- 
ality of the sine cosine set 
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E,   « -ß^^ {[l+rJ+ai'rJ+Anr.I'+l'n8]^) 
n=0 

+   2[l+rB?B+3rn?ll I'+2(^+^)111'   +  ! 'n2 1 (f?" ) ^ ) 

+ [l+rj+ai'^^n^l'+l'n8!^)8} (1-32) 

Similarly,   from equation   (1-3), 

V = IT"   I {[l+n3r;+2nr11+Z(l-n=)a]q; 
n=0 

+ 2[l+narnrll + (rB-«.?B)n + Z(l-na)     Jq.i, 

+ ri+narJ+2nrB+Z(l-n3)   Iqj} (1-33) 

In equation   (1-32)   the coefficient of •*^B  TT" l8 iäentically zero. o t     o t 
Likewise  in equation   (1-33),   the coefficient of qB q,,   is zero. 
(The proof that these quantities vanish  is  extremely tedious  and 
is not presented).    Thus,   in  final  form, 

E,   . ^^{[l+rJ+Bl'rJ^nr.l'+l'n»]^)8 

+  ri+?J+3l/r;+4nrBI
/+I/na](|^)   } (1-34) 

09 

EATT V = -^ Y ri+nar;+2nrB+Z(l-na)   ]qj 

+ [■l+na?;+2nrB   + Zd-n2)3]^ (1-35) 

and L,   the Lagrangian  function,   equals Ek   - V. 
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There remains the task of determining the generalized forces 
corresponding to each qBand qn .  Once this is accomplished, La- 
grange's equations may be used to deduce the differential equations 
vdiich describe each q^ and q^ . 

GENERALIZED FORCES 

The ring shown in Fig. 6 below is considered. 

Y(e.t) 

X(9.t) 

Figure 6.  Ring with time-dependent loads. 

It is loaded at its outer surface by a radial load, X(e,t) and a 
tangential load Y(e,t). 

To determine the generalized forces corresponding to qB and 
qn , X and Y will first be expanded in even and odd Fourier series, 
i.e., 
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X(9,t)  * ^4^- +    )  XB (t)  Cos ne 

Y(9,t)   =    )   Yn (t)   Sin ne 
n=l 

(1-36) 

The virtual work of the external  forces X and Y will be desig- 
nated by 6We and 

2TT 

6We = \     [xöw + Y6v)        Ifiode (1-36) 
J0  - z=cJ 

When c^   is varied by öq,, ,   from the  first of equations   (1-31) , 

6w = 6q0Cos n9 

From equation   (1-1)   and equations   (1-31) 

. Re c  öW 
z=c       a a de 

6v) = -So 6v  - - 6 $) 
z-c      a a      ae 

Thus 

and 

6We = TTRO^ (t)   + YB (t) (^ rB   + ^^q. 

F.   = TTRO^ (t)   + YB (t) (^r,.   + ^)] (1-37) 

in which FB   is the generalized force corresponding to q^. 

Similarly the generalized force corresponding to qB   is 

K   - TTROJX, (t)   + YB (t) {fr^   + ^)} (1-38) 

The Lagrangian function, L, is now known from equations (1-34) 
and (1-35) 

L = E^ - V 

and the generalized forces from equations   (1-37)   and   (1-38) .     The 
Lagrange's equations of motion are thus 

-  37 - 



dL       d    dL 
Bq,"  dt bq^ -F. 

dL       d    dL 
mmmmm 

äq,,     dt dq. 

Application 

Two significant problems have been worked6 . 

The first problem considered was that of the thick ring, initially 
at rest, loaded by a uniform external pressure which varied with 
time as shown below. 

This loading produces, of course, only radial motion. Figure 7 
shows the radial displacement w as a function of dimensionless 
time T for various values of the dimensionless decay time T.. 

d 
T  is the ratio of actual time to the period of the n « 0 mode of 
vibration   (equation   (1-25)). 

The second loading chosen was such as to excite the funda- 
mental bending mode of vibration   (n « 2),   and produce large 
bending stresses.    A radial prersure which varies as Cos 29  and 
linearly with time from P0   at T ■ 0 to 0 at T « T . was chosen. 

The dynamic response of a ring with a thickness to mean radius 
ratio of one to three to this  loading is given in Figures 8,   9, 
and  10. 
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Conclusions 

The analysis presented allows one to predict the response of 
thick rings to dynamic loads.  The theory can be used to determine 
stresses and displacements in long cylindrical shells imbedded in 
acoustic or elastic media. 

Since experiments in dynamic loading are difficult to perform 
one can judge a theory only by comparing its predictions with the 
results of other theories. 

Experiments show that the formulas cited by Love (page 37) , 
the work of Baron3 , and equation (1-29) all predict the lower 
flexural natural frequencies of thick and thin rings very ac- 
curately.6  Since the largest displacements, strains and stresses 
occur with the lower modes, the work of Baron, though admittedly 
applicable to thin shells, should yield results applicable with 
engineering accuracy to thick shells. 
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SECTION II 

STRESSES AND DISPLACEMENTS 
IN A 

CIRCULAR CYLINDER 
FOR 

DISTRIBUTED STATIC LOADS APPLIED 
PERPENDICULARLY TO CYLINDER AXIS 

INTRODUCTION 

The basic theory of the method of solution used here is de- 
scribed by N. I. Muskhelishvili1 , though he does not claim 
originality for some of the background work.  The procedure is 
restricted to the solution of plane problems of elasticity and 
for static cases.  The governing differential equation for the 
plane, static elasticity problem is known as the biharmonic 
equation, v4^ = 0, where cp is a stress function.  It can be 
shown readily1' a that an equivalent solution for stresses and 
displacements can be accomplished by making use of two stress 
functions of a complex variable.  Ultimately these two stress 
functions are written as Laurent series' for the particular 
problem of the circular cylinder.  Then, with the applied loads 
expressed as complex Fourier series', coefficients of like terms 
are matched at the two boundaries, providing sufficient equations 
to solve for all coefficients. 

Figure 11 illustrates a cross section of the circular cylin- 
der with an indication of the loads applied.  Both radial and 
tangential loads may be applied to either or both boundaries; to 
avoid confusion, only representative separated sections of the 
distributed loads are shown.  The total loading must of course 
be self-equilibrating in order to have a static problem, but there 
is no necessity that the loads in each individual boundary have 
zero resultant.  In a later section, a test for force resultant 
and another for moment resultant are presented; these tests are 
included in the computer program to ensure that no attempt will 
be made to solve an improper problem by this procedure. 

One precaution regarding loading should be made here; con- 
centrated loads cannot be handled by the computer program as 
developed; however, a concentrated load can be approximated by a 
statically equivalent distributed load applied over an arc as 
small as one subdivision of the ring. 

The input to the procedure is in the form of shear and normal 
stresses on each boundary at any desired number (this number must 
be divisible by four) of equally spaced (angular spacing) points. 
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The output produces radial (ar), tangential ioQ) ,  and shear (T^) 

stresses as well as radial (u) and tangential (v) displacements 
at any desired point of the ring. 

Sign Convention for Stresses 

t 

Figure 11. Cross section of circular cylinder with 
portions of distributed loading indicated. 
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, 

CHAPTER 1 

THEORETICAL DEVELOPMENT 

FUNDAMENTAL EQUATIONS 

Since  it  is well known that the expression of stresses and 
displacements for the plane static elasticity problem can be 
accomplished in terms of two stress functions of a complex vari- 
able,   we  shall not repeat that development but will  start with 
such expressions. 

Stresses 

For polar coordinates, the three stress components are in- 
volved in two equations. 

ar + ae = 4 Re *(z) « 2^$(z) + ?(2)J (2-1) 

ae 
where 

- ar + 2i Tre » 2[5*
/(z) + ¥(z)]eai9 (2-2) 

i = 4^1 
r,6 ■ polar coordinates (Fig. 11) 

z ■ x+iy (complex variable in rectangular coordi- 
nates) 

■ re1 e (complex variable in polar coordinates) 
z = x-iy (complex conjugate of z in rectangular 

coordinates) 

m  re"13 (complex conjugate of z in polar coordi- 
nates) 

Re = re< 1 part of 
$(z),¥(z) - undetermined stress functions of complex vari- 

able z 
i (z) ■ complex conjugate of i(z) 

♦'(«, - ^ 

By subtracting Eq. (2-2) from Eq. (2-1) we obtain a very useful 
relation which does not contain a. e 

0  - 1 T rt r     r9 Hz)   + Mz) - e8ie[z »'(z) + Y(z)]    (2-3) 

Relation Eq. (2-3) is precisely the desired one for expressing 
the boundary stresses because we see that the radial stress is 
the real part and the shear stress is the negative of the imagi- 
nary part of the right side of Eq. (2-3). 
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Displacements 

Again in polar coordinates, the displacements can be ex- 
pressed in complex form. 

2n(u+iv) « e-^fn q)(z) - z ^(z) - JU)] (2-4) 

where 
u = radial displacement (+ outward) 
v a tangential displacement (+ in direction of increasing 

9) 
li = one of the Lame* constants = shear modulus 
a = Poisson's ratio 

cp(z) - \i (z) dz 

,'(.) - ÄisL 
cp'Cz) = complex conjugate of cp^z) 

t(z) - U(z) dz 

K » the other Lame*  constant,     H * 3-4a for plane stress, 

H  ■ T"^" for plane strain. 1-a 

We see that,   once we have cp (z)   and ♦ (z), the radial displacement 
is the real part and the tangential displacement  is the imaginary 
part of the right side of Eq.   (2-4)   after division by 2^ 

Two Relations from Unique Displacements 

Since the cross section of the hollow circular cylinder is 
a multiply connected region,   the requirement that displacements 
be single valued upon traversing a closed contour containing the 
inner boundary results in two essential relations.     In general, 
it has been demonstrated1   for multiply connected regions  that the 
functions cp (z)   and \|r (z)   used in Eq.   (2-4)   can be expressed as 

cp(z)   « z )  ^   ln(z-zk)   + )  Yk   ln(z-zk)   +cp*(z) (a) 

iHz)   - ;   Yk'   ln(z-zk)   + ♦♦(z) (b) 
k*l 

where 
m « number of interior holes 

zk « any point inside the kth hole 
A,, ■ real constants 

Yk'Yk * complex constants 
cp*(z),t*(z) ■ holoroorphic (single valued) functions of z 
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If cp (z) and i|r (z) from Eqs.(a) and (b) are substituted into Eq. (2-4) . 
we obtain 

2uru+ivl « 2nie-19r (K+l)Akz+KYk+Yk] (c) 

where ju+iv I ■ the increase in (u+iv) obtained during one tra- 
L^ verse around a closed curve containing the k^h 

hole. 

Since we must have single valued displacements, the right side of 
Eq. (c) must vanish; therefore, it is obviously necessary and suf- 
ficient that the two relations of Eq. (d) must hold. 

A^ = 0, HYk + Y* = 0 (d) 

for k * 1, 2, ..., m 

In our particular case of  the hollow circular cylinder,   m =  1 
(one hole) ,   and we obtain  the equations   (2-5) . 

A =  0,   HY  + Y'   =  0 (2-5) 

where  Y' ■ complex conjugate of Y' 

Since « (z) - ÄLlSl and Y (z) - t W ,  we can obtain Eqs.(e) and (f) 
dz dz 

for our case   (m^l,   zk=0+i0,   zsre19)   from Eqs.(a)   and  (b) . 

$ (z)   = A(l+ln z)   + x + ^SliSl z az 

- A in z + A + *- + &lisL (e) z dz 

« A In z + ♦*(z) 

in which A + -^ + ^.'— is  single valued. 
z    dz        ' 

t (z, - X'+ ^1 (f, 

in which -*- +  ^j ' is single valued, 
z    dz       ' 

Two important observations should be made from Eqs. (e) and (f) : 
(1) $(z) and Y(z) are single valued (since A s 0), and (2) y  and 
Y' are the coefficients of z~l   in the series expressions for 
* (z) and Y (z) . 

Equation (2-5) expresses the two relations referred to in 
the heading of this paragraph.  Actually, since the second rela- 
tion is in terms of complex constants, Eq.(2-5) gives us three 
scalar relations. 
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SERIES SOLUTION FOR STRESSES AND DISPLACEMENTS 

Four IT Repreimtation of Load» 

Referring to Fig. 11, we will label the inner boundary of 
radius Rl as Lj and the outer boundary of radius 1^ as La . The 
region between 1^ and L2 will be called S.  It is assumed that 
the loading for this problem will be given in the form of values 
of a and T , on L, and L- , either as functions or 9 of as values 

r     r9 
at discrete points.  Of course, as mentioned earlier, the ring 
must be in equilibrium from these loads and the wieght of the 
ring itself is ignored. 

We shall represent the  stresses acting on Lx   and L3 by com- 
plex Fourier series. 

CO 00 

,1 k e 
1     —00 —00 

(2-6) 

•     —00 —00 

vv'here 
A^ = rik+iCk = complex Fourier coefficient determined by 

loading on inner boundary. 
A^' = Ok+^Vit = complex Fourier coefficient determined by 

loading on outer boundary. 

Laurent Series Representation of Complex Stress Functions 

Though a digital computer cannot work with complex numbers 
other than by separation into real and imaginary parts, it will 
be convenient to continue the  development in complex form and 
separate at the end.  A later section deals in detail with the 
load representation by Fourier series, so for now we will con- 
sider the complex Fourier coefficients, A^ and A^', as knowns. 
From Eqs. (2-3) and (2-6) we can express the boundary conditions 
in terms of stress functions f(z) and y(z). 

— 00 

9 
on 
(r: 

Li 

— OD 

9 
on L8 

Hz)   + ?(2)- eaie[z$/(z)+y(z)]=        (r=R1)     (2-7) 

Dn La 
(r-R.) 

For reference,   one form of equation   (e)   is repeated here. 

i(s)   ■ A In 2 + **(z) (repeated) (e) 

■ 
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where 
A « real constant 

$*(z)   « holomorphic function of z 

Since $*(z)   is holomorphic in S up to and including the boundary, 
it can be represented by a Laurent series   (power  series  in com- 
plex variable). 

00 

$*(Z) = ^z* (g) 

where 
ak = complex constant 

Let us now consider Eq. (2-2) .  Since the stresses are given by 
Frurier series, they are holomorphic functions; thus, the right 
side of Eq. (2-2) must be also.  From Eq. (e) we obtain the 
following: 

dz    z      uj 

00 

2$'^)= A5- + Ykak2z
,t-1 

— 00 

.-i9 
Af|i"e" + ^re-^r'-ie» (k-l)9 

no 

A e-a»9 + ykakr
kei (k-a)e 

—00 

Thus, we see that z$'(z) is holomorphic and for that reason so is 
Y(z). Therefore, Y(z) also can be represented by a Laurent series 

00 

$ (z) « A In z + W zk 

—00 

(2-8) 
00 

T (z) = Ja,'z' 
-00 

Recursion Relations 

Recalling Eqs.(2-5) and noting that y  and y' are the co- 
efficients of z~x in the series representation of * (z) and Y(z) 
respectively, we see that a.1 and ai^  play the aame  roles in 
Eqs. (2-8) as do y an^ y'  in Eqs. (2-5). We can write Eqs. (2-9) 
immediately from Eqs.(2-5). 

A = 0, Ha_1 + a^i   * 0 (2-9) 
where 

alx   ■ complex conjugate of  a^1 
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We now substitute the expressions for * (z) and v (z) from 
Eqs. (2-8) into (2-7), using A - 0, to obtain Eqs. (2-10). two 
very important relations. 

0D 00 00 

y(l-k)akr
kelk9  + Yl.rke"1" 9  -Ya'    r*-aelk9 

—OB 
OB 

li V«'»» for r 

iKe" 
(2-10) 

P 
for r « It, 

•a» • 

Since Eqs. (2-10) must hold on Lx and La for any value of (ke^rr, 
we may equate the coefficients of like power« of e19 for r ■ 1^ 
and for r « Rg to obtain recursion relations for the unknown com- 
plex coefficients ak and a^ in terms of the known complex coeffi- 
cients A^ and A^ (remember that A^ and A^ are the complex Fourier 
coefficients representing the loading). 

Comparing terms independent of 9   (k»0) ,  we obtain 

from the first of Eqs.   (2-10) ,   and 

ag   + aQ   —  a_8 Rg     = AQ 

from the second of Eqs. (2-10) . Since a^, and ^ are complex con- 
jugates, these two relations may be expressed as in Eqs. (2-11). 

2 Re SQ - a.jRJ" « AQ (2-11) 

2 Re a,, - aiaRJ
8 = A^ 

Solving Eqs. (2-11) simultaneously, we obtain Eqs. (2-12). 

Re SQ 
2(R2-R?) 
^ ^ (2-12) 

, m  RjRS(A0^A0') 
•-a 

Rj-R? 

Let us now assign symbols for the real and imaginary parts of the 
various coefficients involved here: 

a,,   - ak+i6k 

< " Ytt+i«».       where k - 0,   1  1,   ...  t 

A; - Pk+iv,, 

— 09 
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Thus,   from the first of Eqs.   (2-12)  we write Eq.   (h)   which will be 
used  later  in making a check for equilibrium. 

ImCRfA^   -   RfA,')   =   Rlv-.   -  R?Co   *   0 (h) 

At this point we may wonder about the contribution of the  imagi- 
nary part of a0;   that  is, ß0.     The addition of an  imaginary 
constant  to  Mz)   in Eqs.    (2-1)   and   (2-2)   leaves  the stresses  un- 
changed;   therefore,   «0   can be assigned any desired value,   say 
zero. 

Equating coefficients of  e!k^   for k=-l,   -2,   +...-•, 
on r   =  R-    and on r  = R2,   we obtain  Eqs.    (2-13). 

(l-k)akRi[   + l_kR^'    -   a/^RJ"2   = A/ 

(l-k)a..R^   4  i_KRrv   -   a^R^   = A.; 

(2-13) 

We eliminate a'  ~   between  Eqs.   (2-13)   to obtain  Eq.   (2-14)   for 
■4-        + "T 

k = — 1, — 2, + ... — <». 

(1-k) (R|-R?)al{ + (RJ?v+2-R1-
2k+2)ä_v = A^'R;" ^-A/Rf"+i 

(2-14) 

Now Eq. (2-14) is of the form A + iB = C + iD since «^ , a.^ , A^' , 
and Ak' are all complex; therefore, A = C and B = D.  Thus we can 
write A - iB = C - iD; that is, we obtain a valid equation by 
going to the complex conjugate form of Eq. (2-14).  However, in 
doing so, we obtain a relation in av and a_k instead of one in 
ak and a_k.  Thus we shall replace k by -k in the conjugate of 
Eq. (2-14) in order to obtain another equation in the same two 
unknowns. 

(R|k+3-Rfk+2)ak + (1+k) (R|-Ra)a_k = Ä^ R*+a-A.!,, R![+a 

(2-15) 

Equations   (2-14)   and   (2-15)   can be solved  simultaneously for  ak 

and a_k   provided the determinant of the coefficient matrix ^ 0. 
We need  consider  Eqs.    (2-14)   and   (2-15)   only  for k  = +  1,   +2,   +3, 
...   since  for  each of k =  -1,   -?.,   ...  we obtain  a pair of  equa- 
tions  conjugate to each pair  fcr positive k and thus obtain no 
new information   (if we know ak ,   we know alt ) .     The determinant  of 
the coefficient matrix  is given  as  Eq.   (2-16). 
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(1-k) (RJ-R?)   (R;8k+a.Rr8k",'a) 

(R»''+8-R1
3«'+a)  (l+k)(R»-R1

a) 

« (l-k») (RJ-R?)  - (I§k+^-R»,'4,8) (R5'8«'+a-R1-
a''+8) 

(2-16) 

From Eq. (2-16) we see that Dk vanishes for k « 0, - 1; therefore, 
Eqs. (2-14) and (2-15) must be solved specifically for these 
values of k.  We already have a0 by the first of Eq. (2-12), so 
we will need consider Eqs. (2-14) and (2-15) specially only for 
k = 1.  Equations (2-17) result from Eqs. (2-14) and (2-15) 
respectively for k ■ 1. 

(R^-RlK + 2(^-1^)^ « Ä^Rl-Ä^R? 
(2-17) 

We now solve for al and ai1 by using the second of Eqs. (2-9) 

na^ + «ij « 0 (j) 

and the first of Eqs. (2-13) for k ■ 1. 

a-i ^ " a-i R\     ~ *\ (k; 

In order to obtain identical unknowns, we take the conjugate of 
Eq. (k) to obtain Eq. (1) . 

a-i ~ a-i " Aj ^i (1) 

We solve Eqs. (j) and (1) simultaneously for a^l   and al1 after 
which we take the conjugate of i^j. 

a-i 

a:i 

- Ä,^ 
K + l 

"THT' 

(2-18) 

(2-19) 

Since i , -  ^.* from Eq. 
-1    K+l 

the second of Eq. (2-17). 

(2-18), we can now solve for a1 from 
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. 

a    . 2=L$l2=l3   -      -2 ^     _ (2-20) 
RS-RJ (R;+RJ)(K+1) 

It can be shovn  that Dk   ^ 0 for Ik I s  2j  and thus,   for k = 2, 
3«   ...  »,  we solve Eqs.   (2-14)   and   (2-15)   simultaneously for ak 
and ä.k .    Also notice that Dk   = D.k . 

(1+k) (Rj-Rf ) (A;Rjk+a-Ak'R;,t+,)-(RJ8*+8-Rr8''+8) (Ä:k Rj+8-Älk R{+8) ak   »   

(2-21) 

(1-k) (Rä-R8) (Ä:kRS+8-Ä:kR{+8)-(R8''+8-R8«'^(A:kRJk+8-Ak'Rrk+8) 
a-lt 

Dk 
(2-21«) 

Thus,   Eqs.   (2-18),   (2-20),   (2-21),   and the first of Eqs.   (2-12) 
completely determine all ak,   the coefficients for f*(z). 

We now shall determine ak,   the coefficients of the series for 
Y (z) .    Knowing ak   and ä_k ,   either of Eqs.   (2-13)  may be employed 
to solve for a^.g.    Using the first of Eqs.   (2-13),  we obtain 
Eq.   (2-22a)  which can be re-indexed and expressed as £q.   (2-22b). 

a^-a  «   (l-k)R8ay   + ä_kiq'8k+8- A^R^"»-8 (2-22a) 

for k « - 1,  - 2,   ... 

a,'  « -(l+kjRja.+a   + ä. (k+8)iq-(•*+»)     - ^+8Rrk (2-22b) 

for k«0,  -1,   +2,-3,   +... 

Neither Eq. (2-22a) nor Eq. (2-22b) gives the term aia, but 
we already have this from the second of Eqs. (2-12); therefore all 
coefficients for ¥(z) can be computed.  In order to reduce the 
number of computations, it was decided to let R, « 1 and R1 be the 
appropriate fraction less than one; then the solution for a cylin- 
der with Rg ^ 1 (but geometrically similar) can bo readily found 
by dimensional analysis. 

The use of Eq. (2-22a) or Eq. (2-22b) for large k resulted in 
lack of precision on a^ because of small differences of large num- 
bers.  It can be seen that, since R1 < 1, we have numbers less 
than unity to large negative powers. Because of this precision 
trouble, the second of Eqs. (2-13) instead of the first was used 
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to compute a^  since It contains only R,  ■ 1,  and therefore no 
difficulties caused by small differences of large numbers.     Equa- 
tion   (2-.22c)   also gives a^,  but from the second of Eqs.   (2-13). 

a; « -(l+lOa.+.RS  ♦ a.(k+8)Rj(^+a)   - ^+8^ 

= -(l+k)ak+t   + ä-(k+8)   - A;+8 (2-22c) 

for k«0,   -1,  +2,-3,   +   ... 

Summary 

Coefficients of $(z) : 

SLQ  Equation (2-12) 

a1  " (2-20) 

a^  M (2-18) 

ak    (for k = i 2,   i  3,   +  ...)   .... M (2-21) 

Coefficients of ¥(z): 

a^  Equation  (2-19)   or   (2-22c) 

a:s  " (2-12) 

a;   (for k « 0,   i  1,   + 2,  ± 3,   ...)   . H (2-22c) 

Equilibrium Verification 

Inasmuch as the entire procedure here is restricted to the 
static case, there are three relations which must be satisfied if 
the hollow cylinder is to be in equilibrium. With the entire 
ring as a free body in Fig. 12, we will sum moments about the 
origin and also sum forces horizontally and vertically. 
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(o jLa 

Figure  12.     Equilibrium of  Entire Hollow Cylinder 

From Eqs.   (2-6) ,   we may write the  following relations after expand- 
ing A*'  and A*   into real and imaginary parts: 

(a )     -   i(T  0)       = Y(TV+i  Ck) (Cos ke+i Sin ke) r Li re  Lx     -fe* 

OD 

(ar)     -  i(Tre)       = ^(pk+i vk) (Cos ke+i Sin ke) 

Thus, we can separate into real and imaginary parts and express 
a and -r  on each boundary. 
r     re 
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<o'' -i (i\   Cos ke  - Ck   Sin ke) 

(Tr )     --£(Ck   Cos ke + IT,,   Sin k9) 

(or)       ■ )(pk   Cos ke - vk   Sin k9) 
LB     -• 

OB 

(T     )     »-y(vk   Cos kfi + ok   Sin ke) 
L,   -• 

We now substitute   (T     )       and   (T     )       into the moment equilibrium 
equation. ^ r    La 

^Mo   -  -Rj ^ [^Sin ke- ^Cos ke]    + R?  Y [^ Sin k9- k"008 ke] 
2n      .  ^ pr ^ _(2TT 

0 

This  expression for M identically vanishes  term by term except for 
k =  0 which must be handled separately. 

^MQ   - -R|^     v0   de+ R?^     Co   de  = 2n(Rj   Co   -  *?   v0)   «0 (2-23a) 

.*.  Rj   Co   -  R?   Vo   *  0 (repeated) (h) 

We see that the  forced condition of  Eq.   (h)   is a consequence 
of  the fact that the  entire ring must be  in moment equilibrium. 

Similarly,   the entire ring must be in force equilibrium 

V F » 0 = ^[(a  )     Ro   -   (a  )     Rx 1 (I Cos 9  + D Sin e)de 
U J0LrLa 

rLi 

+ ^2TT[(T
re)     «a   "   (Tre)     Ri](-i Sin 9  + 5 Cos  e)de 

0 Lg L^ 

Again we substitute the series expressions for stresses. 

? ',r:; ? ■ .^ "{ Z r(Pi.Ra-i1kRi)Cos ke   -   (VkRa-CkRiJSin kö] 

(i Cos 9  + D  Sin ejde 
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" .^ n{ Z [^^-^M008 k9 + (PkRa-i^ 1^)8111 ke] 
0 -« 

(-1 Sin G + j Cos e)jde 

Now, since Sin n6 and Cos n9 comprise a set of orthogonal functions 
over the range from 0 to 2TT, we have only the terms for k = 1 and 
of like kind survive. 

Jf  = 211(0! Ra-^Rji - 2TT(V1R9-CXRI)J ■ 0 (2-23b) 

PxRa - TliRi = 0' ^i Ra - Ci^i =0 (repeated) ((2-17) first) 

Thus, we see that the two forced conditions (one from real equality, 
one from imaginary equality) of Eq. (2-17) are consequences of the 
necessary force equilibrium of the entire ring. 

In the computer program for the solution of this problem, 
these three verifications are made early in the confutation as 
soon as Co' v0 ,   px, r^ , V} , and Ci are available. Of course, 
with loading data supplied numerically, we would not expect an 
exact check; but to some tolerance, these three relations must be 
satisfied before we have a valid problem for the method. 

Stresses in Terms of a, ß, y, and 6 

Since a digital computer cannot function d: rectly in terms 
of complex numbers, we will now express the three stress components 
in terms of real numbers. 

From Eqs.(2-1) and (2-8), we obtain Eq.(2-24) after using A=0 
in Eq.(2-8). 

00 00 

CTr+ae =s 2[H2)+*(z) j - 2[ ^ a^z*   + %****] 
—00 "' 

oo 

=  2 ^rk (ake
lk9  + ake-lke) 

—00 —00 

—00 

00 

■ 2 ^rk [ (ak+i0k) (Cos ke+i Sin k9) + (ak-iek) (Cos ke-i Sin ke)1 
—00 

ao 

- 4 Yr11 (akCos ke  - ekSin ke) (2-24) 
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We obtain equation (2-25) by using Eqa.(2-2) and (2-8). 

Var + 2iTr9 " 2[Z *'iz)  + ^«)J••l9 

OB OB 

— OD —ff> 

OD CO 

- 2e»» ej^re"18 Jka,. rk -l e» (k -l) 9+ ^'r" e1 k Ö J 
—» .OD 

OD OB 

- 2[ ^kafce1^ + ^a;rke» (»+»)9l 
• 00 —00 

00 

■ 2 7^ ffcct,, Cos k9-k3kSin k9+Yi,Cos(ke+2e)-6kSin(ke+29) ] 
—00 "' 

00 

* 2i^rkrkPkCo8 Jc9+kakSin k9+6kCos(k9+29)+YiiSin(k9+29) ] 
(2-25) 

By adding Eq.(2-24) and the real part of Eq. (2-25), we obtain a 
ö 

as given by Eq. (2-26); by subtracting the real part of Eq. (2-25) 
from Eq. (2-24) , we obtain a    as given by Eq. (2-27); and the imagin- 

ary part of Eq.(2-25) gives T fl directly in Eq.(2-28). r9 

2a    ■ ^ ^r* (ctfcCos k9-0kSin k9)+2rkrkakCos k9-kßkSin k9 
—00 

+ Yi,Cos(k9+29)-6kSin(k9+29)l } 

00 

a    « yr,cr(2-i-k) (akCo8 k9-0kSin k9)   + YkCos(k9+29)-6k Sin(k9+29) j 
or 

—OD 

(2-26) 
00 

2o    « yr,,r(4-2k) (akC08 k9-3kSin k9)-2YkCos (k9+29) 
—OB 

or 

+ 26kSin(k9+29)] 

OB 

a    - yrkr(2-k) (akCo8 k9-ekSin k9)-YiiCos(k9+2eN-6k Sin(k9+29) 1 
(2-27) 
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. 

00 

T       » yrkrkpkCos ke+lcakSin ke+6kCo8(ke+29)+Yksin(ke+2e) 1 
— 00 . _         

(2-28) 

Displacements in Terms of g,   ß,   y,   and 6 

We  find displacements u and v from the  real  and imaginary 
parts respectively of  Eq.   (2-4). 

2M (u+iv)   = e"1 Qfacp (z)-Z(p'(z)-? (SE)1        (repeated)        (2-4) 

where 
00 

cp(z)   = U(z)   dz  ■ U$*(z)+A In zldz  - [J****   dz 
—00 

from Eq.(2-8)   with A=0 
00 -2 

-ik^izi+i+ a-'in z + y^!^«|■+, 
—00 

OD 00 

cp'fz)   = ♦ (z)   = A  In z + yakz
,t   ■ Va^ z" ,   since A 

—00 -00 

oo oo 

^'(z)   - ^z"   = ^Xr^e-^Q 
—CO —00 

00 

aj'(z)   = ^r^+^e-1 (k-l)e 
—00 

00 

♦ (z)   = ^(z)   dz = ^ ^'z*   dz  from Eq.   (2-8) 
'    —00 

♦(z) =^i-5'+i +i:, ini + y^i.« 

The above integrations were carried out without including any 
additive constants because such constants represent rigid-body 
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motion.  That this is so can be seen by observing that the total 
of such constants in the square brackets of Eq. (2-4) would be of 
the following form: 

(u+iv) = •^—[a' + ib'l = e"1 9 (a+ib) 
due to 
additive 
constants 
in Eq. (2-4) 

2M 

=   (a+ib) (Cos  9-fi  Sin 9) 

=  a Cos 9+bSin9   +  i(b Cos  9  -  a Sin 9) 

u =  a Cos  9   + b Sin  9 

v = -a Sin  9   + b Cos  9 

As  seen  from Fig.   13,   these values of u and v are exactly the radial 
and  transverse components  of displacement each particle would have 
if  the entire body were rigidly translated by an amount a in the 
x-direction  and an  amount b  in  the y-direction. 

a  cos  9 

v-direction 
u-direction 

b   sin 9 

b  cos 9 

a  sin 9 

 * X 
u = a cos 9  + b sin 9 

v = b cos 9  -  a sin 9 

Figure  13.    Radial and transverse displacements of a particle 
due to given Cartesian displacements. 
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Similarly,   we find by Eqs.   (2-1)   and   (2-2)   that an addition of 
an imaginary constant   (i8o)   to $ (z)   leaves the stresses unchanged. 
This addition of  i0o   to * (z) ,  however,  changes cp (z)   by the amount 
of  i0o2  and changes the displacements as  follows: 

.-16 
(u+iv) =  i 

due to adding 
iß0   to Hz) 

2M 

= A9ir 

KBoZ   =   ^ le -iG re 10 

u = 0,   v = A9r 

where A9   = -r^   or 
2u 

B0 .Ml 

However,   the displacements  u = 0  and v = rA9   are exactly those  each 
particle of a body would receive  if  the body underwent rigid body 
rotation by the  angle A9   about an  axis through the origin as  indicated 
in Fig.   14.    Actually,  of course,   the displacement v ■ rA9  in  the 
instantaneous v-direction  is valid only for small A9.     However,   the 
path of a particle is a circular arc of length rA9  even for large A9. 
Thus,   the addition of the  term i0o   to the series for  * (z)   has  the 
effect of a rigid body rotation of  the ring about an axis through 

the origin by an amount A9   = -r^3 . 

v-dir. 

u-dir 

Figure 14.  Radial and transverse displacements due to 
rigid body rotation. 

In programming this procedure, these rigid body displacements 
were left unspecified and thus the computed displacements are 
"floating."  This actually enables one to obtain the displacements 
in an advantageous form especially for problems of symmetrical 
loading. 
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Ignoring these constant* of Integration in Eq.(2-4)   and the 
term i0o   in * (z) , we obtain a series expression for displacements 
as given by Eq.(2-4*). 

or 

2n(u+iv)   ■ e"10!" VK ^Y z,,+l+ na«!^ « + YH k+l 
Zk+i 

- ^ rk ■•■l e"» ^-l >e  - l^ 5k+l. 5^ In i 
—oo —eo 

0 

2M(u+iv)   - e-^f fr ^ r^^e1 b+l)* + Ha_x (In r+ie) 

+ ^K ^Y r^+^e1 (k+l)9  - ^r^e"1 ("-OS 
0 "•c0 

- 2^ r,,+le'1 (,t+l)9 - äli (ln r-iö) 

OB     — .££_,.«,-. (^)9-| 

2M(u+iv)  « TK $^r r*+ielk9 + e-*9ln r(xa.l-all) 

+ 
o 

k+l 

0 -" 

-tliTrk+,e-,('+,)9-lliT"+l«-,( 
-09 Q 

(n+oe 

+ iee-^^a^+ä^) (2-4«) 

where   (Ka.j+ilj)   ■ 0 by Eq. (2-9) . 

Finally,  we obtain the series solution for u from the real part of 
Eq. (2-4')  and the solution for v from the imaginary part. 
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^Str k+i 
2^u Ä zTkTi 

L k+l 

' L k+l 

2uv = ^TTT 
— 00 

A k+l 

—08 

+X 

k+l 

k+i 

akCo8 ke-ÖkSin kel+ln rf (na.!-Y-i )Cos e + Uß.x-6..X )Sin ej 

OB 

anCos ke-BkSin kel- 7^+l [an Cos k9-3kSin ke] 

Vk Cos (k6+29) -6k Sin (k9+29) J 

YkCos(k9+29)-6kSin(k9+29) 1 (2-4a) 

akSin k9+ekCos k9]+ln rf(K0-l+6_x )Cos  9 + (Y-x-Ha_1 )Sin 9j 

00 

a,, Sin k9+0kCos k9l+ Yrk+irakSin k9+0kCos k9] 
— OD 

Yk Sin(k9+29)+6k Cos(k9+29) ] 

Yk Sin(k9+29)+6k Cos(k9+29)1 (2-4b) 

The form for Eqs.(2-4a) and (2-4b) is obtained using ak = ak+ißk 
and a^ = Yk

+i6k • 

Since the Fortran system cannot handle negative subscripts for 
subscripted variables, we will later convert the stress equations 
(2-26, 2-27, 2-28) and the displacement equations (2-4a# 2-4b) into 
forms not using negative indices. 

Summary 

Stresses 

cr 
9 

r9 

Equation (2-26) 

(2-27) 

(2-28) 
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Displacements 

u    Equation (2-4a) 

v     "     (2-4b) 

The above equations for stress and displacement are in terms 
of series coefficients ak , Bk ,   yk ,   and 6k which are the real and 
imaginary parts of coefficients ak and a{.    The coefficients ak 
and a,,' are in turn expressed in terms of A^ and A^, the Fourier 
loading coefficients; ard these loading coefficients are determined 
from the distribution of a  and i"   on L, and L« .  Thus, our next 

r     r9 
task is to develop a useful procedure of determining A,/ and A^' from 
the given loading on Lj and La.  The loading on the boundaries may 
be in graphical or numerical form and the usual formal determina- 
tion of Fourier coefficients will not suffice. 
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REPRESENTATION OF o  and T A ON BOUNDARIES r     re 

BY COMPLEX FOURIER SERIES 

discontinuity in loading 

(or.) 

N  discontinuity 
(O- '    in loading 

(or ) 

no 

H 
(or ) 

«. X 

istrjbution of o 
t 

on outer boundary 

Figure 15.     Representative distribution of one of  the 
stresses   (a  )   on one boundary showing the 

"double value" nomenclature. 

Our next task is to spell out a detailed procedure for ob- 
taining the complex Fourier coefficients A^ and A^ in Eqs.(2-6) 
which are repeated here for convenience. 

00 

0       - IT   rt r r9 * y A;  e*k 9  on 1^ 

r-iTr9  -1^  e,k9  0nL^ 

(repeated) (2-6) 
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where 

A^ = r^ + iQk   =  complex Fourier coefficients on inner 
boundary. 

A^ = p,, + ivk ■ complex Fourier coefficients on outer 
boundary. 

In the usual manner, we obtain the Fourier coefficients by multi- 
plying both sides of each of Eq.(2-6) by e"lB9 and integrating with 
respect to 6 from 0 to 2Tr. 

2TT 2, 2TT 

\   (o  -it     )     e-'^de  « Y Ak' \     e1 ("-OGde  = 2TTA; 
J0     r       r9   Li k--«    J0 

2n 
since \     e1 ^-") 6d9  = 0 if n ^ k 

=   2n  if n s k 

1 r 2TT 1 r2TT 

.*.  A,'  = r-\   (a -it     )     e-tk9de  = iA    (c _iT     )      (Co8 ke-iSin ke)de 
2^0    r      re  Li 2TT30    r       r9  ^ 

i c 2TTr = r-A     ! (a Cos ke-T   „Sin ke)     -i(T  „Cos ke+a Sin ke)     Ide 2TTjn L    r re _ rG r ' _   J 
u L, Lj 

1    r2" 
^ = 2^0

(orCos k9 - Tresinke)Lide 

~ (2-29) 
1    C 

Ck   =  " "57 \   (T   ü
Cos k9   + a Sin k9)     de /TT J0    re r L^ 

In similar  fashion,  we can write expressions for A^,   pk ,   amd vk . 

1    r2TT 

A;   = -r- \    |  (a  Cos ke-T   „Sin ke)     -i (T   „COS ke+a Sin ke)     Ide ^        2TT Jn L     r re _ re r _   J 

1 (2TT 
pk   = -5- \   (a Cos k9-T    Sin k9)     de 

^TT J0    r re ^ 

vk   = - 2^^   (Tr9Cos%*?--f arSin ke)     de 
0 Lg 

(2-30) 
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In case the loading is given in functional form, the coefficients 
can be found from Eqs. (2-29) and (2-30) and then read directly into 
the computer program.  A subprogram to compute these coefficients 
could bo used.  In general, however, it is anticipated that the 
loading stresses on the boundaries will be in graphical or numerical 
form; the remainder of the development of this division will be 
aimed at obtaining the coefficients p, v, ri, C for this situation. 

A representative distribution of one stress (o ) on one boundary 

is shown in Fig. 15.  We will represent the given boundary load 
stresses as segments of linear functions of 6 between equally spaced 
divisxons of the boundaries.  These linear functions of 6 would be 
straight lines on a rectangular stress - vs. - 6 plot, but do not 
plot as straight lines on one such as Fig. 15.  In order to allow 
for discontinuities, each loaa stress on each boundary is assigned 
two values, a "near" value and a "far" value.  These are, of course, 
the values of the considered stress just prior to and just after 

F 
the discontinuity respectively.  In a symbol such as (a  )  ; n re- 

u, ' '' ** 
fers to the n  division point cf the boundary, Lg refers to the 
outside boundary, and F refers to the value of a on the "far" side 

of the discontinuity.  At most division points, there will be no 
discontinuity and the "near" value of the stress will be equal to 
the "far" value. 

Loading Coefficients for Case where Discontinuities May Exist 

For each linear segment of a loading stress, we may express 
this stress in the form given by Eq.(m). 

Ror  )N - (ar )F 1(9-9.) 
(a)1* = (ar )F +-l^-h Li        („, 

n    n i^     (eB+i-eB) 

where (a )^ = a between eB and G^+x on outer 
n      boundary at the angle 6. 

To reduce writing, we shall develop the expression for pk only and 
it is understood that we are working only with loading stresses on 
the outer boundary.  From the first of Eqs.(2-30) , we express pk 
by integrating over each segment, one after the other, until the 
integration around the entire boundary is complete. 
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2TTDk   =£   § B+l[(or)L8  Co8 ^  '   (Tre)L3   sin ke]d0 ^n) n=0    e,, n n 

where M+l = nunvber of equal  subdivisions of  the 
circle. 

Into  Eq.(n)   are now substituted the  linear  expressions  for   (a  )   s 

T r n 

and (T 0)   in the form given by Eq.(m).  For convenience, we r9 n 

shall represent o  by a and T  by T; also we understemd that both 
r re 

a and T are the loading stresses on L^ . 

2nok =}    \ ^l\\ol 4(gn^  " aM (e-eB)lcos k9 
n^O Je„      L Ae J 

- [if + Cn+X " 'r') (e-eB)]sin kejde 

where 9n+1-en   = A9   since each boundary   is divided  into M+l  equal 
parts. 

M       9n+1 N F N F 
= Y    \ I r°f -  9n (0°^   I  0»)lcos ke   +   {a*+x   " CTa)9   Cos ke 

n^O Ja L  L A9 -1 AG 
n 

N F N        _     F 
- IV-o   fliL+L-UjLlsin ke  +  (T°+*   " T»)e   Sin keWe 

L  n   ön v      A9 J A9 J 

^    f  r  F /O,+i   - a, v irSin ken  B+       lO^+i   - OLxfiL,-     -i«     ! ^      n .1 : Li [°- - 9"(    A9     ,-)I~k    ]a     
+ ( 'le     ''L^1" k9 + ^cos ke] 

n-u 9n ^n 

+[Tf - e. ,iri^.[^pif+I
+,%_LlI,[tccs ke- i sin *]*'*} 

"n n 

We now evaluate the above relation for 2Tipk in terms of the indicated 
limits and then cancel all possible terms. 

- 70 - 



1     f^     r    M C1 1 
2npk   - ^ Y {an+lSin keB+l - o^in X9B    -(£t±If-2*-) (Cos k0tt+1 

- Cos k9n)+  Tn+lCos keB+x-  Tn   Cos k9B 

,     N F 
- rrC**1 "Tn (sin keB+1  - sin kej} (P) K   A9 J 

for k=- 1, -2, ... -« 

By writing out several terms of the above series we see that we 
can reassemble the terms into a more useful form as given by Eq. 
(2-31p) .  Notice that a0   = am+x   arid T0 = T,+! . 

N    F   F     N 

Z [(ar ' ar )  Sin k9n + (-^ ^^ ^L±L)  C08 k9.J 
n=l   n    "La ^0 L, 

Pk  " 2kTT 

Ml N  4   P      F N 

2kn ^ r9B   
reB^     " 1^9 L,      J 

for k = -1, -2, ... I« (2-31p) 

Since this procedure is designed for use with Fortran programming 
of digital computers, we must avoid the use of subscripted variables 
with negative subscripts.  Therefore, we shall relabel pk , vk ,   r]k , 
and Ck in Eqs. (2-29) and (2-30) for negative k as jp^ , Vj, , r± ,   and 
Ck.  If -k is substituted into Eq.(2-31p) for k, we obtain no change 

in the first ) but we obtain a sign change for each part of the 

second \ .  Therefore, we do not need to compute pk separately; if 

we represent pk as 

rrO        vP 
pk « )  + ) ' (k * 1' 2' •'• a,,) 

then we will  find pk  by 

L<3 
Pj.   = V^  - ^.   (k =  1,   2,   ...   «) (2-3l£) 

We can compute vk   and Vj,   in a very similar manner  to that 
above for  ok   and Pk   to obtain Eqs.(2-31v)   and   (2-31vJ 
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N     F    F       N 

,. , N    F    F     N 
+ ^Tiv -v> Co*k». - 'r"   r'v^"   —!sin k9"J 

)  + ) (2-31v) 

■<v  - V 
v, - - 7 - ;     (k - 1, 2, ... » (2-31v) 

The coefficients TI, ri, Q,  and £ are computed in exactly the 
same way except that they-'are the Fourier coefficients for the 
inner boundary and thus are computed from the shear and normal 
loading stresses on Ll. 

M+l N        F  „    F       ,   N 

^ 2^7 IK. - <> sin fc9.^g'r>   W'''1"0'^') Co' k9-] 
n«i      ■ ■ L^ L^ 

* IT + IT (k «  1,   2,   ...  «) (2-31TI) 

N F F N 

^-^TKe.-T'e.LSlnk9-t(Tre-+Tr9Cr9,'rTr9,+>'Cosk9-J 
k -  1,   2,   ...   • N       F       F N 

1     ^r N        F Gr +CTr 'ar      '0r t +1^ IK-0'.!,00'k9- -( • V^    i.81"k9»] 

-   72  - 



i--i; 
C     K - Y (k =  1.   2,   ...  «) (2-31C) 

^7 — 

Notice  that,   if discontinuities are present   in  the  loading 

ises,   the coefficients > 
result  in Fourier analysis. 
stresses,   the coefficients diminish as r-  .     This   is a well  known 

k 

Loading Coefficients tor Case of No Discontinuities 

At this point, it should be noted that the first version of 
the Fortran program was based on the assumption that there were 
no discontinuities in the loading stresses; for this case, the 
"near" and "far" values of any loading stress are the same at 
each division point and we can eliminate the superscripts N and 
F.  Thus, for no loading stress discontinuities we obtain from 
Eqs. (2-31) the following expressions for p, p, v, v» TI, r\,   Q, 
and C for k = 1, 2, 3, ... «: ~"    ~ 

o« -l^yFj^r, - V.- ar.+1
)
La
C08 k9" 

-l^X^rS,-  X-.- T".+1
)
L3
Sin k9-  (2-3lD,, 

Y'P  r'P 
^ a  ^ T 

+ I (2-31£) ' 

1   "f1 

^ = " T^kT I^re.- Tr.n.l- 
TreB+l>  

C08 k8- 
n»l . La 

" 2^- I   t2ar  " 0r  " 0r   )  Sin k9«   (2-31v) ' 2T7A9K ^  rB   rB.x   rB+1 

r'V   r'v 
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v» - - r - r (2-3^' T      "a 

^   ■^i?■X(2Or.'0r->■Or.*',Ll
CO,k9• 

- 2^?" i£<2Tr9.- ^9..." Tr9.«,I,
8in ^     (2-31,l) ' 

•a      ^ T 

rv   .y/T1
+y,T1 (2.31n)' 

-2^1?-X(20'.-ar.-.-0'.«,
I,Sink9- (2■31C,' 

- r; * r a 

c - -y/c - y/c (2-310' 
— ^ T      ^ a — 

Notice that, for no loading discontinuities, the coefficients 

diminish as r^-. this fact is also well known in regard to Fourier 

series. 
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Loading Coefficients for k « 0 

It is readily seen from Eq.(p)   that Eqs.(2-31)   and   (2-31)' 
are invalid for k = 0 since k appears in the denominators;   this 
situation was caused by the integration of Eq. (n)   with V.im 
stresses  in  the  form given by  Eq.(m).     Therefore,   we roust handle 
the zero  terms  separately beginning with expressions  in the form 
of Eq.(n)   for k * 0. 

^re»+l       L, 

nsre.      r n 

=   ?r l[af + (2»±Ll_^H9-e.>]   de 

L 
n=0 " -e. 

• J0K
(9. « -9' '+ (""I; "^ [S;Y 9i   -  9. (9. +l -9. ) ]} 

?F        IN F 

n=0 

F N 
,0«    +   d.-n r».   :   ^JLlL)     AG 

n«0 2 La 

or 

Similarly, 

n=0       B "^   L8 

^   " " IS"   1 (Tr9    + Tr9 J <2-31vo) 

n=0       B B+l   L, 
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<* - - %Xir''. *'*-*\ ,2-3ico) 

In case there are no discontinuities, the "near" and "far" 
values of any loading stress are alike at each division point and 
we can drop the N and F designation and obtain the following ex- 
pressions for the zero terms of the loading coefficients: 

n«0  ■ 
) (2-31p0)' 

-^I(T-' (2-3^' Vo 

L, 
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REPRESENTATION OF COEFFICIENTS FOR *(z) and Y(z) 

IN TERMS OF LOADING COEFFICIENTS 

Our next task is to express ak and a^', the coefficients in 
the series' for $(z) and Y (z) respectively, in terms of pk , p^ , 
vk / v^ • 1% • Ji * Ck • and £& ,   which are the Fourier coefficient's 
representing the loading on the boundaries.  Since we have found 
these loading coefficients in the previous paragraph in terms of 
the given loading stresses, our solution will be formally com- 
plete when we obtain a^ and ak' in terms of On • £> » vk i etc. 
Again, because the Fortran system cannot allow negative sub- 
scripts, we shall formulate all series' and their coefficients 
to avoid such use.  Therefore, we shall employ the following 
equivalence of symbols: 

A-k - &' - Ji + i£jc 

A-k = hk   =  0*   + i Vjt 
a-k = Ä Ä Äj. + ii* 

a-k = »k = Yk + ^k 

Thus, we must express a, B» Y» 6, a, ß, y,   6 in terms of p, p, v, 

2,'   Ti» Jl. C» J5.« ~ ~ " "" 

Coefficients of |(z) 

From the first of Eqs.(2-12) and Eq.(h) we obtain a0. 

CLQ Re ao = ^(Po^ivg)^^^^^)  * ^Po-^  (2-32a) 
2(Ra - Rf) 2(Rj-R?) 

B0   = any real number.    Values for  ß0   produce rigid body 
rotation   (see earlier paragraph on displacements) 
and will be  assigned for convenience after a 
specific problem is  solved on  the computer.     During 
computation,   ß0   =  0. (2-32a)' 

We obtain ax   and &l   from Eq. (2-20)   after changing h!.x   to A/,   etc. 
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^ l       l RS- R} (Rj  + R?)(K+1) 

„ Rj(^-ivi)-R?(TK-iCi)   . 2(TH->-iCi)R1 

R*   -  R* (RS+R»)(K+1) 

ai   . < Pi * ^JTi 2TK Ri 
RS-  R* (Rj+R?) (K+1) 

ßi   . -Räv^-^ R?^   .        ^iRt 

R*-  R{ (R|+R?) (K+D 

(2-32b) 

The remainder of the ak   and 0k   for k = 2,   3,   ...  • are computed 
from Eq.(2-21)   with D^   given by Eq.(2-16) . 

a
k 

(Uk) (Rj- R?) (A^»-»-8- A^R^^MR^8^8" RT8"^8) (diTRS"1"8- Ä^R?^) 

(Uk)(Rj-  R1
8)[(pk^ivk)!y

k-t-8   -   (TvHCk)Ri-',-t-a] 

D* 

.   (RJ8fc4-8- R1->,t-,-8)C^-ivlt)^-h8   -   (T^-ijjRT8] 

Dk 

/#a    .   (UkXR8- R^Xp,^-*-8- TlltR^^8HRJ8't^,^8- Rg-8"-'-8»^^^8- Jl.Rt^8) 
D» (2-32c) 

m   (UkXR8- R;XvkR^k+8- CkR^-lt•,•8)f(R?8k•,•8- Rf8"^Xv^R5^- ^Rg^8 ) 

We can determine g^   and ^ from Eq. (2-18) and these terms are given 
below in Eqs.(2-33a) 

a.. - a, - a,+18. - Xh. .  ^'^^ 
-> ~*      ~* K + l        K+l 

K + l 

£» - -c^ 

(2-33a) 

H + l 
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The remainder of the akand fik   for k = 2,   3,   ...» are also ob- 
tained  from Eqs.(2-21)   and   (2-16)   but with k replaced by -k and 
utilizing the changed symbols.    Note that D.k   ~ Dk. 

a_k   = d,   = tt.+ifik 

m   (1-k) (R|-   R?) {£?!£- A^RS-*-8) 

Dk 

_   (R|^g-   R8"-*-8) (Ä;^-«-8-  Ä^R£^j 

_   (1-kXR8- RfXp.RS-'-8- T]kR1
k+8HR|k+a- *Zk+aXpkiqk+a- T^RT»*8) ak   - ^ "^ 

(2-33b) 

e     .   (1-kXR8- R;XvkR5+a- CkR![+2MR?k+8- R?,t+aXvkRJk+8- Qk^
k+a) 

Ek    -  = z=  
Dk 

For efficiency of computation,   notice the common parts  in 
Eqs. (2  32c)   and   (2-33b). 

Coefficients of Y(z) 

We may obtain Yk   and 6k   for ^ =* 0#   1»   2,   ...» from Eq. (2-22b) 
or  Eq. (2-22c) .    As explained earlier,   the use of Eq. (2-22b)   re- 
sulted in loss of precision;  therefore we shall use Eq.(2-22c). 
In some check problems,   it was verified that it makes no difference 
which one of Eq.(2-22b)   or Eq.(2-22c)   is used as  long as all  com- 
ponents  are accurately computed. 

a^   ■ Yk+i6k   =  -U"»'Oak+a+ lir+a-  A^+a   for ^ * 0,   1,   2,    ...   • 

= -(l+k)(at+a+  ißk+2) + (s1jt+8-  i&jt+a)-(Pk+a+  ^k+a ) 

•'•   Yk   * -(l+lc)oik+a+ Sk+a-  Ok+a 
(2-34) 

6k   - -(l+k)Bk+8- Jjc+a- Vk+a        for lc«0,   1,   2,   ...   • 

We obtain YI   and fii   from Eq.(2-19). 

a-x   - A   - YI+  i6i   -      -j^ -       Y^  
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ll - 
1+H 

Ai - 
. HCxRt 

1+K 

(2.35a) 

The second of Bqs. (2-12)   gives Xa   and is* 

a-a   - *t  - 1«  + ifij  - R?R?(^- HI 

m44r(po+ ivo- no- iCo) 

.*.     ^   *  ^   «    (po-  Tfc) 
Rj-R? 

R»-R? 

(2-35b) 

The remainder of the ^ and 6^   are found from Eq. (2-22b) with k 
replaced by -k and using the change of symbols to eliminate nega- 
give subscripts. 

«In - i' -1*+ iöj, - (k-DRja,.^ S^gR?*-8- A,'.^ 

. (k-DRja,.^ s.aR?"-8- A^.R» 

- (k-l)R»(ak-a+ iBk-a) + (ak-a- i0lt.a)Rjk-8-(T>t-a+ i£k-a)R{ 

•*• 1* - (^-l)R?Äk-8+ all-aR?k-,- ^-aR{ 

^   - (k-DRjj^.,- 0k-aR?k-a- ^.^R^ 

(2-35c) 
for k ■ 3, 4 # ... 

Again it was found in some check problems that y^   and 6^ could be 
found from Eq. (2-35c) based on Eq. (2.22b) or they could be found 
from a relation corresponding to Eq. (2-35c) based on Eq. (2.22c); 
both methods gave the same values for ^ and 6^ if the components 
were accurate.  Here, however, it is better to compute with Rl 

included because two terms in each of Eq. (2.35c) contain Rl to 
positive exponents in k and these two terms become negligible com- 
pared to the other term for large k. 

. 80 . 



All that remains now is to express our stresses and dis- 
placements within the ring in terms of series' using no negative 
subscripts. 
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FINAL EXPRESSIONS  FOR STRESSES  AND DISPLACEMENTS 

USING  NO NEGATIVE  SUBSCRIPTS 

Stresses 

From Eqs.(2-26) . (2-27), and (2-28) we obtain the three 
stress components by splitting each series, substituting -k for k 
in the part summed from -® to -1, and by employing the modified 
symbols used above to avoid negative subscripts. 

00 

0
Ö*    y rkI(2+k) (akCos k9-efSin ke)+YilCos (k9+2e)-6k Sin(ke+2e) 1 
9    kfeo   L J 

00 

+ ^ r-^^-k) (a^Cos kq+^Sin k9)+ikCos(2e-ke)-6Jt Sin(2e-k9) ] 

(2-36a) 
00 

or «    yr^-k) (avCos k9-BkSin k9)-YkCos(k9+29)+6kSin(k9+29) 1 

00 

+ )  r-k[(2+k) (a^Cos kg+^Sin k9)-^Cos(29-k9)+6^8^(29^9) 1 
k-1      L ^ ' J 

(2-36b) 
00 

T._«    Y r"!" kpuCos k9+kakSin k9+6kCos(k9+29)+YkSin(k9+29) ] r9 k^O 

OD 

+ Y r^f-kenCos k9+kakSin k9+6jlCos(29-k9)+YkSin(29-k9) ] 

(2-36c) 

Displacements 

We find displacements from Eqs. (2-4a) emd (2-4b) with no 
negative subscripts by the same sort of substitutions as were 
done for stresses. 

2MU - /^i.v   tejcCo* ^9+1* Sin k9)+[(H5tx-^ )Cos e+(K<g1+6l )Sin elln r 

+ / Uk  (a^Cos ke-0kSin ke)-)rl+k (akCos k9-ßkSin k9) 
0 0 
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l-k 
- yr1-* (OfcCos ke+l^Sin ke)-pY^[^Co8(2e-lce)-6JrSin(2e-k9)j 

1 2 

- X^T-j^    YkCos(ke+2e)-6kSin(ke+2e) 

or 

• 

2nu =   ^0^-^)008 B+CK^+ÖJ )Sin 6   In r - Oj Cos 9  -  ßx Sin 6 

+ ^r1"" (H^^k) (OfcCos ke+.gjcSin ke) 
2 

+ ^rl+k (K^"k) (ttkCos ke-BkSin ke) 

•.i-k 
- pY^ [lJcCo8(ke-29)+6JtSin(ke-29) 

- ^^    YkCo8(k9+29)-6kSin(k9+29)J (2-37a) 

00   .i-k 
^V J y^l k   ("^sin k9+l*Co8 k0)+    K(£1+ö1)CO8 e+(^A-Hai)Sin 9   In r 

.i+k 
+ Y\^   (akSin k9+0kCo8 ke)+^rx+k (akSin k9+0kCo8 k9) 

0    + 0 

00 « S ~i -k r -i 
+ \rl-k (-a»Sin k9+<gJtCo8 ke)+)-^^|_ikSin(29-ke)+6*008(29^9) 

+ /TiT^    YkSin(ke+29)+6kC08(k9+29) 
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or 

2^iv ■ [(Kgi+Ö^Cos e + C^-HOi )Sin 9 Jin r + ^Co» e   - OjSin 6 

00 

+ yr1-* (H^k) (-OjtSin ke+l^Cos ke) 

00 

+ p1^ (K^k) (a,sin ke+e.cos ke) 

0 
00 

+ ^Y-^ [-^Sin(ka-2e)+6JtCos(ke-2e)l 
2 

+ ^Tlfk [Yi|Sin(ke+29)+6kC08(k8+29)] (2-37b) 

0 

In Eqs.(2-36a,b,c) and (2-37a/b) we obtain a and 3 from 
Eqs.(32a,b,c); a_ and £ from Eqs.(2-33a/b); y and 6 from Eqs. 
(2-34) ; and ^ and 6_ from Eqs. (2-35a#b,c) . 

Alternate Forms for Stresses 

While Eqs.(2-36) are quite compact in appearance, there 
are some possible objections to the form of the expressions; 
(a) the trigonometric functions of 9 have three separate values 
of argument, and (b) the coefficients y X' 6' and A. must be 
computed and stored. 

We would like to have only one value (namely, ke) of the 

trigonometric argument in the k  term so that we have a true 
truncated Fourier series.  Such a series forms the most accurate 
trigonometric series possible for k terms.  It would be possible 
to make large errors if only a part of the Fourier coefficient 
of the last term were included; this could happen if a large 
missing part nearly canceled the included part to make a small 
total coefficient. 

The reason we would like to eliminate y.  x» 6* *ncl 6_ is to 
reduce storage and to avoid some possible lack of precision in 
their computation.  If all coefficients are to remain stored (as 
was done in first Fortran version) , this elimination of necessary 
storage may be important. 
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Therefore, in Eqs. (2-26), (2-27) , and (2-28) , we shall re- 
assemble the various terms so as to have our series' expressed 
with coefficients of sin k9 and cos k6; in other words, the 
stresses themselves are just Fourier series' even though the 
Fourier coefficients are involved. We shall also express y, 
£,   6, and 6_ in terms of a, ji, B» ,§.# P« ü.» v, and ^ from 
Eqs. (2-34) and two relations giving ^ ^d A from Eq. (2-22c) . 
These two relations (for R^ ■ 1) are as follows; 

Xt ~   (Ic-l)^^ + ak_a - ^-a 

(q) 

6^ - (k-Dj,., - ßk.8 - ^-3
for k " 3' 4' •• * 

Omitting considerable algebra, we obtain the stresses from 
Eqs.(2-36a), (2-36b), and (2-36c) in the above indicated 
modified form as shown by Eqs.(2-38a), (2-38b), and (2-38c). 

afl « 2a0^
r"aRl(p9-V 

9 1-R? 

+ [(3r+r-a)al + (r-1+2r-3)ax- r '^^ - r-^^Jcos 9 

r-(3r+r-*)Bl + (r-1+  2^ ) S1 + 1—iilii- - r^Vilsine 
L ' 1+M "   J 

ao 

+ ^ {r*r(2+k-kr-a+ r"8 + r-8k-a)ak- r"8 pk 1 

+ r-k[(2-k+kr-8+ r8*-8+r-8)av-r-8£k 1 }cos k9 

00 

+ 
k' 

00 

7 {rkr(-2-k+kr-8- r"8- r-8k-8)0k+ r-8vk] 

+ r-kr(2-k+kr-8+r-8+ r8*-8)ek- r-8vk]}sin k9     (2-38a) 
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o    = 2a0   - '""?<Po-n.) 
1-R? 

cos e 

Sin e 

+ [(r - r-a)al+(3r-1-2r-«)a1+ ^^^^   + r-» p1' 
1+K "    J 

+ [- (r - r"« ) ßl + Or"1 -  2r-9 ) ßj -  r"lKR^   + r"» v!' 
1+K "   - 

oo 

+    1 {rkl{2 - k + kr"a- r"8- r-^-^a^ r-aok' k=2       L k Mkj 

+ ^"[(2 + k - r"». kr"»- r**~*)ak+ r'^k] jcos ke 

^ {rk[(-2 + k - kr-a+ r-a+ r'^-^B,- r^v/ 
k=2 

+ r-«'[(2 + k - r-a- kr-a- r8^-)fik+ r^vJjsiri ke   (2-38b) 

^ l-R? 

[(r - r-aR*)ßl + (-r-1
+ 2r-9Ra)6l- 

r"1 KRI £i   - r-^Cx' 
1+H 

Cos  9 

+  [(r -  r-sR*)a1+(r-1-  2^1^)^-  ^ HR
1 ^   - r" 

1+H 
oo 

+    Y (r'Ts, (k - kr-a+ r-a- r'9*'^-  r-av/ 
k= 2 L     L k J 

R?TTi]si in e 

+ r •»[§„ (- k + kr-a+ r-a- r311-8)   - r-avk] } Cos ke 
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+ ^ {rk[aic (k " kr"a+ r'a- r"8"-8)- r-apk J 

+ r-^f^ (k - kr-3- r"a+ r8k-a)+ r~a£k] }sin ke  (2-38c) 

In equations (2-383, b, c) the value of It, = 1 has already been 
used; similarly, computations of a,   &,  a, and ß should be done 
with Rg set equal to 1. 

For efficiency in computation, notice that in Eq.(2-38a) the 
coefficient of ak   is the negative of the coefficient ek; also that 
the coefficient of ak is the same as that of flk.  These same re- 
marks hold for Eq. (2-38b) , and negatively for Eq. (2-38c).  In fact, 
if the coefficient of ak in Eq.(2-38a) is named XA, then the co- 
efficient of ak in Eq.(2-38b) is (4-XA); similarly if we label the 
coefficient of ak in Eq.(2-38a) as XB, then the coefficient of ak 
in Eq.(2-38b) is (4-XB). 

Alternate Forms for Displacements 

For the saune reasons as for stresses, we would like to express 
displacements with only one argument in 0 in the general term and 
also eliminate the use of y 6* Y' and 6*  Again we do this by re- 
grouping the terms of the several series and substituting for y,   6, 
^, 6, their values from Eqs.(2-34), (2-35a,b), and (q) . From 
EqsT(2-37a) and (2-37b) , we obtain Eqs. (2-39a) and (2.39b). 

2MU = r(K-l)a0 
1-R? 

+ [(Ha1+ ii^L)^ r + r8 (^ax   - a^ ^Vax* al- ^ ) ]cos 

+ fulBx- ükLjln r - ßl-^l(2e1- 6l- Vi )-ra (^Bi Isin e 
L      - 1+H - ^ - ~ ^ J 

oo 
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OB 

+ Y^ [r(K-l+k) + (l-k)r-l+ r«"^^- ^J^t- ^^„jsin ke 

(2.39a) 

2Mv - r(K+l)Bo- r"1 <vo-C0)R; 
l.R{ 

+ [(Kßx- üiiJ?l.)ln r + ß^ rM^Si- £i-(2ß1- Sx- Vi) Icos 9 
1+H 

+ [. (Kai + üi^LÄ.) In r - ax* ^(Ä^)^* £^(2al+ a!- gl)]8ln 9 
1+K 

k 
+ ^ (f^ [r(K+l+k)+ r-ak-l-(l+k)r-1   Jß, 

2 

+ f^- [r(K+l-k)- r"-i + (l-k)r-l]ßk+ f^-^k- frr^««}C08 ke 

00 
•k 

+ ^ {f^- [r(K+l+k)+ r-^-^-d+k)^1]^ 
2 

+ f^- [-rU+l-k)^ r^-^-d-k)^1]^- £Y^£*- £^IPk}sin k9 

(2.39b) 

Modified Expreesions for Stresse« and Di»placeinmf to Avoid Over- 
flow of Computer 

Because the separate computation of such terms as r~k   (a number 
less than one to a large negative power)   resulted in overflows in 
the computer,   it was necessary to modify Eqs. (2.38a,b,c)   and 
(2-39a,b)  considerably.    Basically,  the indicated expressions were 
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expanded so  as to perform algebraically the subtraction of  large, 
approximately equal numbers rather than attempt to do it numerically 
by computer.     Then the various  terms in each expression were grouped 
in  such a mam.er that no single term "ran  away".     This  required a 
considerable  amount of manipulation which will not be repeated 
here—only the final expressions are shown below.     Actually,   many 
individual  terms in the expressions below tend to zero as k becomes 
large,   and  an underflow condition could result.     Underflows were 
avoided,   however,  by programming tests prior to calculation—then 
if the number  to be computed would underflow,   the number was merely 
set to zero and not computed. 

In the  following modified  forms for  Eqs.(2-38a,b,c)   and 
(2-39a,b),   we shall use the following terminology to avoid excessive 
writing: 

Tl ■ 1 + k - Rj   -kR? 

T2 ■ 1 - k - Rj   +kR? 

H = ka (2Rj   -  R*   -  1)   + R} (R?k   -   2) 

T9  Ä  1 + HR?»-a 

ak   -  {Riak-a[p*(Tl)-pk]-  R^CTIK  ryRj] + r^Rf^ Pk}(T9) 

0k   = {R?k-8[vlt(Tl)+vlt]+ R{[-Ck(Tl)+ CkR?]- ikR?k- v,}^) 

T3 =  2 + k - kr"3  + r"8 

T4 = 2 - k + kr"8  + r-3   + r8"-3 

T5 « akr~k 

-   (^'{R?"8^)^-   pk]-R?k[(T2)Tik+ R?^]  +  11,+  p.Rj^iTS) 

T6 « r-* -8 (ak -£k) 

«&k+a{R>-*[(Tl)pk-   pk.  Hpk]  -  RT'TVCTI)   -  ]>   +   riltR?k-3}(T9) 
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T7 « r-kßk 

.   (|L)*{«{-■ [(12)^- vk] + ^k[ckRf- £„(12)] - Ck- vkR?k}(T9) 

T8 = r-k-■(-ßk- vk ) 

k+a -   ^ " T8 {^ ^ [ük " vk (Tl)- Hv,]  -  Rr8Ck (Tl)+  Ck-  CkR?""8}^) 

T10« k - kr"8   + r-8 

TU«    -k + kr"8   + r"8  - r8*"3 

. r(H-l-k)   .   ^ T12. ^^^ + r 

T13S rM^SL- r-^   +^ 8k-l 

k-1     " '      T   k-T 

Tl4a ria^- - r- 

From Eq.(2-38a), 

afl  - 2a0   + 
r"a^(Po- *> 

6 1-R? 

+ [(3r + r-«)^-»-^-1* 2^)^- EZüSLa   - r^pjco« 9 
1+K J 

+ [-(3r + r-aj^-Kr-1* 2r-» )ß, + fl^i^ - r^vxlsin 9 
l- * 1+H -   J 

+    y {rkr(T3)ak-  Dkr-a] +   (T4) (T5)   + T6 |co8 k9 
k«2^    L J j 

00 

+    Z {r,,[-(T3)3k+ r-8vk] +   (T4) (T7)   + T8}sin k9 (2-38aa) 
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From Eq.(2-38b), 

r 1-R? 

+ ["(r - r-»)at+(3r-1-  2^)^+ t'1***^   + r"* pl Icos 9 
— 1+u J 

+ f- (r - r"3 ) 3. + Or"1 - 2^ ) 31 - 
r"lKRlCl   + r"» vl ]sin 6 

L - 1+K "   J 

+ Y {rkr(4-T3)ak+ r-
apkl  +   (4-T4) (T5)   -  Tejcos k9 

k^2L     L J 

oo 

+ Y {rkr(T3-4)ek-  r-avkl +   (4-T4) (T7)   - TSJsin k9 (2-38bb) 
yk2l   L J 

From Eq.(2-38c), 

T
re  _ r-^Mvp-Co) 

1-R? 

+ [(r - r-9 R* ) B1 + (-r-1 + 2r-«I^)gx- ElLsSil  - r^F^^Jco« 9 

+ [(r - r-9Rt)a1 + (r-1- 2^«?)^   - ElLüÜa   - r-»R?TH]sin 9 

ao 

+ y (rkr(TlO)6k- r-avkl +   (Til) (T7)   + TSkos ke 
k^2L    L J 

00 

+ y (r* '(TlO)ak- r-aokl  -   (Til) (T5)   - Tejsin kB (2-38cc) 
k^2L    L J J 
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Prom Eq.(2-39a), 

2uu - r(K-l)a0   + r"lR?(p0"T19) 

1.RJ 

+ ^-1+ 2:ur)ln r - 5^   + £F'(2Sx+ a*- £1)   + rM^axjcos 9 

+ [(Kg,- üili)ln r -  ß,   - ^(2ßl.  ß,- vl)   - rM^ßxlsin 9 

+ f {r» (T12)a.-(T13) (T5)   + ^S- + ^gf^Co. k9 
i\ ^ Ä 

CO 

+ y {-r" (Tl2)ßk-(T13) (T7)   - fllL^JL + £i2§I\sin kß 
k^1 k-1 k+1 J 

(2-39aa) 

From Eq.(2-39b), 

2MV - r(H+l)ß0   - r"   (vo   -  Co)«? 
I-RJ 

+ [(KBi-ükSMln r + ßi   + rM^ß!   - £?-(2ß1 - ß,- Vi) Icos 9 

+ r-(Ha1+ .iHÜLUn r - tti* ra (^Ox   + ^(2^+ ax- ^ ) Isin 9 

es 

+ V {r" (114)8,   +   (T13  - 1^.) (T7)- fUl^L - -£-(T8) Icos k9 
k^ ■L k-1 K+1        J 

+ y {r* (Tl4)ak   -   (T13  - ^) (T5)- fUliL + j^i(T6)}sin k9 

(2-39bb) 
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CHAPTER 2 

THE COMPUTER PROGRAM AND ITS USE 

General 

The FORTRAN II computer program for solution of the thick cy- 
lindrical shell by the Muskhelisvili method will be described in 
such a manner that it can  be used by persons quite unfamiliar with 
the theoretical development. 

Basically, the program will yield stresses and displacements 
at all specified locations in the shell for any specific stress 
loading on the boundaries. This loading must place the shell in 
static equilibrium.  Only plane problems can be solved; the load- 
ing stresses must not vary in the direction of the cylinder axis. 
Either or both boundaries may be loaded by radial stresses, shear 
stresses, or by both radial and shear stresses (in any case, over- 
all static equilibrium must exist) .  There need not be symmetry 
in any of the loading stresses.  The loading stresses may be con- 
tinuous or discontinuous. 

The analysis is based on approximation of the distributed 
loading stresses by straight line segments between equally spaced 
points (called division points).  Therefore, to prepare a problem 
to be solved by this program, the ring is first divided angularly 
into some number (M) of equal parts.  Next the numerical value of 
each loading stress at each division point is divided by the larg- 
est absolute value of any stress on any boundary.  These stress 
ratios at each division point are the loading stress inputs to 
the program.  Also, the program takes the outer radius to be unity 
and any other radius as the geometrically similar fraction thereof. 
Thus, there is a bit of dimensional analysis in first reducing the 
actual problem to proper computational form and then interpreting 
the results in terms of the actual problem.  In all that follows 
here we are referring to these "reduced" or "program" stresses 
and dimensions. 
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THE PROGRAM PROPER 

Brief Functional Outline 

Initially the problem and control parameters are read in 
then the loading stresses on both boundaries ("far" points) are 
entered.  If any discontinuities exist, the "near" values of the 
stresses at all discontinuity points are read in. Next the loca- 
tions at which stresses and displacements ?re to be computed are 
read.  Certain boundary points are designated test poir s at which 
locations the computed radial and shear stresses must match the 
corresponding loading stresses within a certain tolerance—this 
is the fundamental criterion upon which is based the decision to 
proceed with more computation or to consider the problem solved 
and print results.  The final data input is a table of sines and 
cosines of the angle for each division point. 

In case only one boundary is loaded, certain loading coef- 
ficients are zero.  When such a loading condition exists, those 
loading coefficients are set to zero to avoid wasted computation 
time. 

Since the entire method is based on static equilibrium of 
the shell, checks are made for this condition.  If the shell is 
not in equilibrium, the program pauses and prints such a message. 
These static checks are made after the loading coefficients for 
k = 0 (moment check) and k ■ 1 (force check) are computed.  Thus, 
very little time is wasted if static equilibrium does not exist. 

As soon as a set of loading coefficients is computed for any 
k 2 l, complete use is made of this set of coefficients and they 
are never used again.  Then the next set of loading coefficients 
are stored in the same locations. The contributions to stresses 
and displacements by each set of loading coefficients are accumu- 
lated, so we have a running set of results at all times. This 
scheme has both advantages and disadvantages.  The disadvantage 
is that stresses and displacements can be found only for that set 
of computation points originally read in.  The advantage is that, 
since only eight storage locations are used for the loading co- 
efficients (for k ^ 1), there is no limit as to the number of 
terms (value of k) that can be used to solve a problem having 
complicated loading stress distributions.  Computer storage will, 
of course, limit the number of computation points; but this 
usually will not be a problem.  If results at more points are 
desired, run the program again for the new points. 
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The Flow Chart 

fSTARBT 

Read Problem and Control 
Parameters. 

Read M#   TOL,   DELTOL,   KINT,   KMAX, 
NRTH,   NDISC,   NTEST,   LC,   IPR,   STAT, 
Rl,   RPI,   DELT,   RDELT,   XKAP#   LLOC 

|   KTES=0 | 

Read Loading Stresses on Inner 
(LI) and Outer (L2) Boundaries 

e 

Read Locations of Loading 
Discontinuities and "near" 
values of stresses 

Read JDISC(JJJ) , XLSN(L,JJJ) , 
XLTN(L#JJJ) 

Ö 
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9 
Read Locations where Stresses and Dis- 
placements to be Computed 

Read RCJJ), TH(JJ) 

Read Computation Point No., Boundary No., 
and Division Point No., at which Loading 
Stress tests to be made 

Read NT (I), LL(I), Jl(I) 

Read in Value of Sin9 and Cosö for each 
Division Po:.nt 

Read SNd), CS(I) 

Preliminary Computations & Initialization 

L«l,   K-l,  Compute R1SQ,   RSQ,   Ell,   E12 

6 
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inside only 

rz 
RHOZ ■ 0 
ZNUZ ■ 0 

I 
Compute ETAZ & ZETAZ 

Both 

ETAZ  * 0 
ZETAZ ^ 0 

Compute ETAZ AND ZETAZ 

S   Print Zero Loading Coefficients 

Print ETAZ, ZETAZ, RHOZ, ZNUZ 

Compute ALZ 

6 
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/ Print Loading Coefficients 

Print ETA, ETAB, ZETA# 2ETAB, 
RHOf RHOB, ZNU# ZNUB 
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error no 

Compute ALI, BETl, 
AL1B, and BET1B 

Compute Contributions to Stresses 
and Displacements for K^O; i.e. 
DSIGT, DSIGR, DTAU, DU, & DV from 
ALgi ETAZ# ZETAZ, RHOZ, and ZNU2 

G> 
Compute Contributions to Stresses and 
Displacements for K^l; i.e. DSIGT, 
DSIGR, DTAU, DU, and DV from ALI, AL1B, 
BET1, BET1B, ETA, ETAB, ZETA, ZETAB, 
RHO, RHOB, ZNU, and ZNUB for K«l 

Accumulate Stress 
*| and Displacement 
Contributions for 
K«0 

|KIP«0 | 

KIP=1 Accumulate Stress 
and Displacement 
Contributions for 
K=l 

I 

L 
Compute ALK and BETK 

I 
Compute Contributions to Stresses and 
Displacements for K > 0; i.e., DSIGT, 
DSIGR, ETAU, DU, and DV from ALK, BETK, 
and from ETA, ETAB, ZETA, ZETAB, RKO, 
RHOB, ZNU, ZNUB for K > 1 

Accumulate Stress and Displacement 
Contributions for K > 1 

<*> 
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$_ 

Compare Computed Radial and Shear 
Stresses with Loading Stresses at 
Boundary Test Points 

Print Accumulated Stresses and 
Displacements for each Computation 
Point 

Print K, R(I), TH(I), SIGT(I), 
SIGR(I), TAU(I), Ü(I), V(I) 

- 
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error 

Print Statement that Max. Allowable 
Number of Terms Used but Stresses Still 
do not Meet Test 

® 
© 

Print:  Problem 
Complete 
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INPUT PARAMETERS AND DATA 

Definition of the Numbers in the Dimension Statement 

XLS(A,B), XLT(A,B):    A = 2 (two boundaries) 
B « M -f 2 

SN (A) , CS (A) : A = M + 2 

JDISC(A): A = NDISC (number of discontinuities) 

XLSN(AlB)f XLTN(AfB):  A = 2 (two boundaries) 
B »  Number of discontinuities * 

NT (A), liL(A), JI(A)i   A - NTEST (number of test points) 

R(A)f TH(A)r SIGR(A) , 
SIGT(A) , TAU (A), U(A) , 
V(A): A ■ NRTH (number of computation points) 

Definition of Problem and Control Parameters 

M    —number of equal sectors into which ring is divided, must 
be divisible by 4. 

TOL  —tolerance within which all computed stresses must match 
loading stresses at test points. 

DELTOL—increase in tolerance after KINT terms of Fourier series 
representing loading stresses have been used. 

KINT —number of terms at which TOL will be increased by DELTOL. 

KMAX —maximum number of terms the program will be allowed to run. 

NRTH —the number of computation points; that is, the total num- 
ber of locations at which stresses and displacements are 
to be computed including the test points on boundaries. 

NDISC —number of division points at which there is a loading 
stress discontinuity of any kind on either boundary. 
Even if only one stress on one boundary has a discon- 
tinuity at a given division point, it counts as one of 
NDISC. 

NTEST —number of test points.  Test points are those locations 
on the boundaries at which loading and computed stresses 
are compared.  The test points are included in the com- 
putation points. 
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LC   —if LC = 0, we do not print loading coefficients; 
if LC = 1, we do print loading coefficients. 

IPR  —if IPR "0, we do not print accumulated stresses and dis- 
placements; if IPR ■ 1, we do print them. 

STAT —amount within which the computed checks for static oquili- 
brium must fall.  Since there are various unavoidable 
inaccuracies, STAT must not be zero, or the program will 
always stop because of apparent non-ecm librium.  Judge- 
ment in choosing STAT must be based on total forces and 
moments on the ring.  Perhaps .1% of absolute area under 
loading stress curves might be tried.  If a problem has 
symmetric loading, use a rather small STAT—this gives a 
check on data entry error. 

Rl   --radius of inner boundary (for outer boundary - 1).  Rl is 
the ratio of inner to outer radius in the actual problem. 

RPI  * 1/TT 

OELT = 2TT/M, the angle in radians between division points. 

RDELT - 1/DELT 

XKAP = H * a Lame' constant,  H ■ 3-4a for plane stress, K = -r"^" 
for plane strain, where a ■ Poisson's ratio. 

LLOC —if LLOC = -1, inner boundary only is loaded; 
if LLOC = 0, both boundaries are loaded; 
if LLOC - +1, outer boundary only is loaded. 

UF   —underflow control parameter.  If certain numbers become 
less than 10"^, we set that number to zero to avoid an 
underflow; of course, the test is made before computation. 
UF = 20. has been used with IBM 7040 (which underflows at 
10"88), but the characteristics of the machine being used 
should govern. 

Loading Stresses and Their Specification 

The loading stress notation is shown for radial stress on the 
outer boundary.  Similar notation is used for the other three load- 
ing stresses.  The division point numbering starts with 1 at 9 = 0 
because a subscript cannot be zero in a Fortran subscripted variable 
Shown in Fig. 16 are the radial stresses at several points with no 
discontinuities and one point at which a discontinuity exists. 
Only one value for each of the four loading stresses is read in if 
there are no discontinuities at that division point in any of the 
four stresses.  However, if one or more of the four stresses has a 
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• 

One of the Loading Stresses 
(here radial stress) XLS(2,N) = "far" 

p point 
— XLSN(2I1) = "near" 

point 

XLS(2.3) 

XLS(2.2) 

XLS(2,1) 
XLS(2>M) 

N=sdivision point 
number 

XLS(1,N) 
XLTd.N) 

XLT(2,N) 

LS(2,N) 

Stress sign convention 
for positive stresses 

Figure 16.    Notation used with loading stresses, 
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discontinuity at a given division point, all four stresses are con- 
sidered to be discontinuous, and two values are read in for each 
stress (even though the two values may be identical for some of the 
stresses).  Definitions for loading stresses follow: 

XLS(L,N)  —radial loading stress (or) on boundary L at division 
point N.  If there is a discontinuity at this division 
point, XLS(L#N) is the "far" point as shown in Fig. 16. 

XLT(LtN)  —shear boundary stress (Trg) on boundary L at division 
point N.  Again, this is "far" point if there is a 
di scontinuity. 

N        —division point number starting with 1 and proceeding 
through K + 2. This overlap of two on the numbering 
was necessary because of starting and ending some of 
the series'. 

L        —boundary identification.  L * 1 signifies inner boundary; 
L - 2  means outer boundary. 

XLSN(L,JJJ)—"near" value of radial loading stress at a discontinuity 
on boundary L.  JJJ is the serial number of the discon- 
tinuity starting with 1 for the first discontinuity 
and running through NDISC for the last. 

XLTN(L,JJJ)—"near" value of shear loading stress at a discon- 
tinuity on boundary L. JJJ same as above. 

JDISC(JJJ) —division point number at which discontinuity serial 
number JJJ occurs. 

Computation Point Identification 

R(JJ) —radius of computation point serial number JJ. JJ starts 
with 1 and runs through NRTH. 

TH(JJ)—angle measured from 9 = 0 of computation point serial 
number JJ. 

See Fig. 17 for sketch of computation point numbering system. 

Test Point Identification 

NT (I)—computation point number of the test point having serial 
number I.  I starts with 1 and runs through NTEST. 
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LL(I)—boundary identification of test point having serial number I, 
LL(I) = 1 for inner boundary; LL(I) « 2 for outer boundary. 

J1(I)—division point number of test point having serial number I. 

Figure 17 shows the numbering scheme for computation points 
and test points. We start with computation point number 1 at the 
smallest angle and the smallest radius at which stress and dis- 
placement computations are to be made. Then we proceed counter- 
clockwise at this same radius until all computation points on that 
circle are numbered.  Next we move to the next larger radius at 
which any computations are to be made and again proceed counter- 
clockwise until all computation points at this radius are numbered. 
This process continues until all computation points are numbered 
serially from 1 through NRTH.  Computation points will be used as 
test points—thus computation point 8 may be test point 2. Test 
points must lie on division points in order to have a stress to 
compare with.  Test points must not be points of discontinuity. 
As an example, for M = 32, we will locate on Fig. 17 the computa- 
tion and test points indicated in the following table: 

Radius 
Comp. Pt. No.  Test Ft. No.   (R(JJ)sfract.        Angle 

(JJ) (I) of Rl)      (TH(JJ) in radians) 

1   .5 .3 

2 (1) .5 

3 (2) .5 

4 (3) .5 

fin 
32 
16TT 

32 
42TT 

32 

5   .65 .3 

6   .65 
6n 
32 

7   .8 

8   1.0 .3 

9 (4) 1.0 

10 (5) 1.0 

4n 
32 

32 

- 119 - 



e=.3 rad. 

I  division 
point 
numbers 

1, 2,   ••• 10 are computation point 
numbers 

(1), (2), ••• (5) are test point 
numbers 

Figure 17.  Example of numbering system for computation 
points and test points 

Table of Sines and Cosines 

In much of the program, sines and cosines of the division 
point angles are used many times. Since there are only M+2 of 
these angles, the values of sine ■ SN(I) and cos9 = CS(I) are 
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computed by a preliminary program; these values are then read in as 
data. This procedure makes the program run considerably faster 
than it would if sines and cosines were determined as functions. 

SN(I)—sine of the angle whose division point number is I.  I 
starts at 1 for 9 = 0. is M for e - 2TT - OELT, is M+l for 
9 = 2rr and ends at M+2 for 9 = 2TT + DELT. 

CS(I)—cosine of the angle whose division point number is I. 
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OUTPUT RESULTS 

The outputs are nearly self explanatory in that they will all 
have header symbols above.  However, for clarity let us discuss 
briefly each of the outputs. 

Stresses and Displacements at Computation Points 

These, of course, are the results that the entire program is 
designed to produce.  These results may be printed only once, after 
the computed stresses match the loading stresses at all test 
points; if this is desired set IPR ■ 0. Another choice is to print 
these results after the stress and displacement accumulations are 
made for each value of k; if this is desired, set IPR ■ +1,  The 
latter mode enables one to observe rate of convergence, proximity 
of computed to test stresses, etc. Following is an example of the 
form for these results: 

K R THETA SIG THET SIGMA R TAU U V 
38 .65 1.45 1.7 .8 -.9 .1 -.2 

K = 38       —38 Fourier terms of loading stress representation 
have been computed and their contributions to 
stresses and displacements accumulated. 

R s .65      —this computation point has radius ■ .65. 

THETA a 1.45 —this computation point located at angle 1.45 rad. 

SIG THET = 1.7—transverse stress (a ) accumulated to date is 1.7, 

SIGMA R = .8 —radial stress accumulated to date is .8. 

TAU =-0.9    —shear stress (T  ) accumulated to date is -.9. 

U « .1       —radial displacement (u) accumulated to date is 
u = U/2)i ■ .l/2|i. where yx  * the second Lame1 

constant (u ■ shear modulus). 

V s -.2      --transverse displacement accumulated is v * V/2u = 
-.2/2M. 

Note that the above example gives output for only one compu- 
tation point; if more points were computed, the heading would not 
be repeated for each point. 
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Loading Coefficients 

It may be desired to observe the values of the loading coef- 
ficients ETA, ZNUB after each k to see how convergence is pro- 
gressing.  These loading coefficients are not simply the Fourier 
coefficients of the loading stress functions, but are simple com- 
binations of them.  If it is not desired to print these coefficients 
after each k, set LC * 0; if printing is desired, set LC « +1. This 
output is of the following form: 

THE NEXT 8 NUMBERS ARE ETA, ET AB, ZETA, ZETAB, RHO, RHOB, 
ZNU, ZNUB 

0.1 0.2 0. 0. 
-0.3 0. 0.25 -0.2 

Here we have ETA=0.1, ETAB=0.2, ZETA=0., ZETAB-0.. RHO=-0.3, 
RHOB=0., ZNUs0.25, and ZNUB—0.2. 

Static Equilibrium Check 

In case the absolute value of any of STCHX, STCHY, or STCHM 
is greater than STAT, the following statement will be printed and 
punched: 

LOADING STRESSES NOT IN OVERALL EQUILIBRIUM | 

After this statement is punched and printed, the computer will 
pause. Restart if another problem follows. 

If a careful check of the loading stresses reveals no error, 
the above statement may merely mean that the value of STAT was 
chosen too small for the inherent errors and approximations made. 

Insufficient Terms Used 

In case the maximum desired number of terms (KMAX) has been 
reached by k and the computed stresses at the test points have 
still not come within tolerance (TOL + DELTOL), the following 
statement will be printed and punched: 

MAX NUMBER TERMS COMPUTED BUT DID NOT MEET TEST 
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After the above statement is punched and printed, the stresses and 
displacements accumulated to date will be printed after which will 
be printed the end-of-problem statement described in the next para- 
graph. 

End of Problem Statement 

If the problem is terminated because of successful solution 
or because of k reaching KMAX the following statement will be 
printed: 

| THIS PROBLEM COMPLETE  RESTART IF OTHER PROBLEM FOLLOWS | 

The above statement will not be printed if the problem is terminated 
because of failure to meet static equilibrium. 

After the above statement is printed, the machine will pause 
and should be restarted if another problem follows. 

Logic Errors 

In case some control number is set to a meaningless value 
accidentally the following statement will be printed: 

LOGIC ERRORS CHECK CONTROL PARAMETERS 

If this statement is printed, examine KINT, KMAX, LC, IPR, LLOC 
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EXAMPLE PROBLEM 

Actual Problem 

A cylinder is loaded in plane strain conditions by compres- 
sive radial stresses of 5000 psi over two small arcs on the outer 
boundary as shown in the figure.  The outside radius is 100 inches; 
the inside radius is 50 inches.  Poisson's ratio of the material 
is 0.3 and the shear modulus is 2 x 108 psi.  The loaded small arcs 
are 4TT/100 radians.  See Example Figure 18. 

Program Problem  (See Example Figure 19) 

Desire to compute answers at indicated locations: 

No. r (inches) 8 (rad) 

1 50 0 

2 50 .62831853 

3 50 1.5707963 

4 50 4.7123890 

5 60 .62831853 

6 62.5 .62831853 

7 75 .6283185:i 

8 85 .62831853 

9 100 0.0 

10 100 .62831853 

11 100 1.5707963 

12 100 4.7123890 

Input Data 

1.  DIMENSION XLS(2,102) , XLT(2,102), SN(102)/ CS(102), JDISC(4)( 
XLSN(2,4). XLTN(2I4), NT (6). R(12) , TH(12), SIGR(12). 
SIGT(12). TAU(12), ü(12) , V(12) , LL(6) , Jl(6) 
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Poisson's ratio * 
a - .3 

Shear Modulus = 
M « 2 x 10a psi 

.62831853 rad 
2 On 
100 

XKAP 
3-o 
1+0 

1.3 

2.0769231 

Example Figure 18.  Loading stresses on actual shell 
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Poisson's ratio « a * .3 

Shear Modulus ■ 
M = 2 x 10B psi 

9=.62831853 rad 

\  100 

N^l.101 

XKAP = K = 
3-o   3-.3 
l+o ~ 1.3 

2.0769231 

N=75 

Let M ■ 100 (each loaded 
arc « 2DELT) 

Then DELT ■ rrrr 
100 

« .062831853 rad 

RDELT - 15.9154943 

Example Figure 19.  Loading stresses on program shell 
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2. READ 1, H,   TOL, DELTOL, KINT, KMAX, NRTH, NDISC, NTEST, LC, 
IPR# STAT# Rl, RPZ, DELT# RDEI.T, XKAP, LLOC 

Remarks: 

•hell divided into 100 equal segment» 

2 cardst 

M - 100 

TOL - .03 

DELTOL ■ .1 

KINT - 10 

KMAX - 100 

NRTH - 12 

NDISC ■ 4 

NTEST ■ 6 

LC » 1 

IPR - 1 

STAT ■ .001 

Rl - .5 

RPI = .31830990 

DELT - .06283185 

RDELT « 15.9154943 

XKAP - 2.0769231 

LLOC + 1 

increase TOL by DELTOL when K «.- KINT 

end problem if K - KMAX 

there are 12 computation points 

there are 4 discontinuities 

there are 6 test points 

print loading coefficients 

print accumulated stresses and displace- 
ments after each K 

symmetric problem should allow small STAT 

reciprocal of n 

2TT radians divided by 100 

reciprocal of DELT 
3-c 

H ■ z— for plane strain, and a ■ Pois- i+o 
son's ratio = .3 

loading stresses on outside boundary only 

3. READ 1111, UF 

UP -     20. 

4. READ 2, ((XLS(L#N), XLT(L,N), N « 1, MP2) , L 
MP2 ■ M+2 - 102 

1, 2)  Note: 

204 cards: 

102 blank cards for unloaded inner boundary, L > 

24 blank cards for L = 2 and N = 1, 2, ... 24. 

1. 

2 cards XLS(2,N) XLT(2,N): 
-1.0 0.0 N « 25 
-1.0 0.0 N « 26 
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48 blank cards for L = 2 and N - 27, 28, 74 

2 cards XLS(2,N)   XLT(2,N); 
-1.0      0.0 
-1.0      0.0 

N 
N 

75 
76 

26 blank cards for L « 2 and N - 77, 78, 102 

5.  READ 3, ((JDISC (JJJ) , XLSN(L, JJJ) , XLTN(L, JJJ) , JJJ 
NDISC) . L ■ 1, 2) 

1, 

8 cards: Re :ks : 

JDISC(JJJ) XLSN(L,JJJ) XLTN(L,JJJ) JJJ 

25 0. 0. 1 

27 0. 0. 2 

75 0. 0. 3 

77 0. 0. 4 NDISC - 4 

25 0. 0. 2 1 

27 -1.0 0. 2 2 

75 0. 0. 2 3 

77 -1.0 0. 2 4 NDISC = 4 

Note:  These cards contain the "far" point loading stresses at the 
four discontinuities.  See Example Figure 19. 

READ 2, (R(JJ), TH(JJ)# JJ * 1, NRTH) 

12 cards • • Remarks: 

R(JJ) TH(JJ) JJ 

0.5 0. 1 also test pt. #1 

0.5 .62831853 2 

0.5 1.5707963 3 also test pt. #2 

0.5 4.7123890 4 also test pt. #3 

0.6 .62831853 5 

0.625 .62831853 6 

0.75 .62831853 7 

0.85 .62831853 8 
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1.0 0. 9 alto test pt. #4 

1.0 .62831853 10 

1.0 1.5707963 11 also test pt. #5 

1.0 4.7123890 12 also test pt. #6 

NRTH - 12 

See Example Fig. 19 for location of these computation points. 
These numbers are not in parentheses. 

7. READ 1. (NT(I), LL(I)# JKD, I « 1, NTEST) 

6 cards: Remarks: 

NT (I) LL(I) JKD I 

1 1 1 (1) 

3 1 26 (2) 

4 1 76 (3) 

9 2 1 (4) 

11 2 26 (5) 

12 2 76 (6)    NTEST 

See Example Fig. 19 for location of these test points.  Test 
point numbers are in parentheses; e.g. (4) . 

Output Results 

An example of the output for k - 1 is included here to show 
the actual format.  Such intermediate results do not need to be 
printed. Also the printing of ETA, ... ZNUB need not be printed. 

1-K  THE NEXT 8 NUMBERS ARE ETA#ETABf ZETAf ZETAB#RHOf RHOB,ZNU#ZNUB 
0. 0. 0. 0. 
0. 0. -0. -0. 

K      R   THETA SIG THET 
1 0.50000 0. -0.106667 
1 0.50000 0.62832 -0.106667 
1 0.50000 1.57080 -0.106667 
1 0.50000 4.71239 -0.106667 

SIGMA R TAU U 
0.000000 -0. -0.'>41025642 0. 
0.000000 -0. -0.041025742 0. 
0.000000 -0. -0.041025742 0. 
0.000000 -0. -0.041025642 0. 
0.016296 -0. -0.039452992 0. 
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1 0.6250G 0.62832 -0.087467 -0.019200 -0. -0.039202052 0. 
1 0.75000 0.62832 -0.077037 -0.029630 -0. -0.039316240 0. 
1 0.85000 0.62832 -0.071788 -0.034879 -0. -0.040096532 0. 
1 1.00000 0.      -0.066667 -0.040000 -0. -0.042051283 0. 
1 1.00000 0.62832 -0.066667 -0.040000 -0. -0.042051283 0. 
1 1.00000 1.57080 -0.066667 -0.040000 -0. -0.042051283 0. 
1 1.00000 4.71239 -0.066667 -0.040000 -0. -0.042051283 0. 

Conversion of Results Back to Original Problem 

From dimensional analysis we find that we can obtain a given 
stress by the rollowing relation: 

{§-} max 
= f-} 

actual shell 
max 

program shell 

. . S 
(S   ) 
max act. 

x S 
act   (S  )       prog, 

max prog.  F 

where 

S        =  any stress  in actual  shell. 
act    ' 

S    ■ corresponding stress in program shell. 

(S  )   = maximum absolute value of any loading stress on 
ii»ax act    ^  i  v 11 actual shell. 

(S  )    ■ maximum absolute value of any loading stress of 
max prog ... F    *      program shell. 

For our example« 
(S  )  , max act 
(S  ) 
max prog 

5000 
5000 

Thus any stress in the actual shell can be obtained by multiplying 
its counterpart in the program shell by 5000. 

Also, we find from dimensional analysis the following rela- 
tion for displacements; 

kl 
.*. d 

actual shell {lr} program shell 
act 

act R» 
x d 

prog 
prog 
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where 

d = either displacement« u or v, in actual «hell. 

d = corresponding displacement in program shell. 

Ra = radius of outer boundary of actual shell. 

Rj, ■ 1 ■ radius of the outer boundary of program shell. 

For our example problem, Ra   « 100".  Thus, any displacement of act 
the actual  shell may be found by multiplying the corresponding 
displacement  in the program shell by 100. 

Of course,   the usual similitude requirements must be met 
before the above conversion relations are valid.     The shells must 
be geometrically similar,   the points under consideration must be 
located geometrically similarly,   the elastic constants must be the 
same,   and loading stresses must be similar throughout.    All these 
requirements  are met by our problem procedure. 
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SECTION III 

STRESSES IN THICK-WALLED CYLINDERS WITH CAPPED ENDS 

CHAPTER 1 

INTRODUCTION 

This section is concerned with static stresses in thick- 
walled cylinders with end caps.  The cylinders are assumed to be 
loaded axisymmetrically; thus the general problem is to solve 
axisymmetric elasticity problems involving a difficult geometry. 

The specific problems considered are axisymmetrically loaded 
thick-walled cylinders with:  (1) one end closed with a flat cap; 
(2) one end closed with a hemispherical cap; and (3) both ends 
closed with either flat or hemispherical end caps. 

Axisymmetric problems are mathematically two dimensional, 
involving the area which when rotated about an axis of revolu- 
tion generates the solid of revolution comprising the region of 
the problem.  Since the geometry of capped thick-walled cylinders 
precludes an exact solution, an approximate numerical solution 
was considered. 

Of the numerical methods considered the finite difference 
method in conjunction with Southwell stress functions was used1 . 
This method is well suited to machine computation and can be 
organized such that most of the tedious labor is delegated to 
the computer.  The axisymmetric problem is essentially solved 
when Southwell stress functions cp and i|i are obtained over the 
generating area of the solid of revolution of interest. 

Assuming the z axis to be an  axis of revolution, the South- 
well stress functions cp and if  over the generating area are 
governed in cylindrical coordinates by the equations: 

ft- ^ 0 ■ & 
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Stresses for the axisymmetric problem are defined in terms of op 
and if ast 

ae Tß^M^-H ^2b) 

a      - - - T*- (3-2c) z r ör *        ' 

T       ■ i 1^- (3-2d) zr      r dz 

Allen has shown that boundary conditions are satisfied if cp 
and if  satisfy equations equivalent to the following on the 
boundary of the generating area: [See Ref. 1, pg. 139] 

a ■ -rv (3-3a, 

f^ + (11 - r [♦♦(I-VXPJJCOW • rapr (3.3b) 

In summary of the Southwell Stress Functions; Functions cp 
and if  must be found such that Eqs. (3-1) are satisfied over the 
generating area, and Eqs.(3-3) are satisfied on the boundary of 
the generating area. Stresses may then be obtained with Eqs.(3-2) 
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CHAPTER 2 

THE FINITE DIFFERENCE METHOD AND SOUTHWELL STRESS FUNCTIONS 

Difference Equations in Cylindrical Coordinates 

Finite Difference Methods are among the more frequently en- 
countered approximate methods for solving differential equations. 
The literature on this subject is extensive.  Frequent references 
are made in this study to the book by Forsythe and Wasow3. 

In the finite difference method the region of interest is 
covered by a mesh or grid.  The intersections of the grid lines 
are referred to as nodal points and are classified as boundary 
points, adjacent points, or interior points according to proximity 
to the boundary.  All differential equations are approximated by 
algebraic difference equations which involve the representative 
values of the unknovni functions cp and f at the nodal points. 
Sufficient difference equations must be written to solve for all 
cp and f values associated with the nodal points over the region. 
This involves approximating Eqs.(3-1) and (3-3) by difference 
equations, and applying the equations to the appropriate nodal 
points.  Stresses may then be obtained from the solved values of 
cp and f by difference equations approximating Eqs.(3-2). 

Where possible, well known central difference equations were 
used to approximate differential equations [See Ref. 2, pg. 187]. 
Figure 20 shows the notation employed.  Thus, for example. 

ss N 

W 

Figure 20. Notation for nodal points 
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ör  Ä 2h L(   ^ " (   ^sj 

^H-^p-f«  'K-2«  'P^  'S] 

For a square mesh, which was used in the rectangular generat- 
ing areas, the difference equations equivalent to Eqs.(3-1) are 
respectively: 

VE + (1 ' 2?% + ^W + (1 + 27)CPS " % ^ 0       <3-4a) 

*E + (1 - h**+ *w+ (1 + hh - 4*P = ^E + ^W " % 
(3-4b) 

On the boundary central difference equations equivalent to 
Eqs. (3-2) involve nodal points outside of the region, i.e. 
"fictitious" nodal points. Accordingly a backward difference 
equation using the first three terms of Newton's backward inter- 
polating formula is employed there? .  On an outer boundary for 
example: 

l7sk[3'  'P-4<  >s+(  'ss]        (3-5a) 

and on an inner boundary, 

f7Ä-k[3'  'P-4(  'N
+(  >NN]      

(3-5b) 

Similar  equations  can be written  in the  z  direction. 

Using Eqs.(3-5)   and central difference equations where 
possible to  represent  Eqs.(3-2)   yields  the difference equations 
for  calculating normal   stresses on  the boundary surfaces of  a 
cylindrical  region. 

On an outer  surface parallel  to the z  axis: 

0r=   2^7 {[3 - 71t1-v)>p - *PS 
+ ^W |> - f>P 

" '»♦s + »ss} (3-6a) 
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"e* äk {[3 + I7(1
-
V)
>P * ^s + 'ss + ^ S)  (3-61" 

°z~  ik [3*P " 4*S + »Ss] (3-6c' 

A similar equation can be written for an inner boundary« using 
the second of Eqs.(3-5) for the derivative in the r direction. 

On a boundary parallel to the r axis: 

0r« 2^ l>N " ^s + »N " »s] " ?" [**  + (1
-
V
"P]  

(3-7a) 

"9*2^ ["N " "s] + 73" [»P + (1
-
V
>'PJ (3-7b' 

'z«-äkk-vl (3-7c) 

Boundary Conditions for Cylindrical Regions 

In general is is always possible to integrate Eq. (3-3a) 
around the boundary of the region to obtain ijf on the boundary. 
To apply Eq. (3-3b) it is necessary to combine its difference 
equation equivalent with difference equations approximating 
Eqs. (3-1) in such a way that "fictitious" nodal points are 
eliminated.  Allen discusses in detail how this is accomplished 
for a special case of loading1. More general boundary equations 
can be obtained in the same way. These equations are referred to 
as governing cp equations on the boundary, since cp must be 
determined there. All boundaries are assumed parallel to either 
the z or r axis. 

On an outer boundary, 

h#,  h 

- >* %n& - * - IF> v] <3-8a' 
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On an inner boundary, 

*N - ü1 + 7'1 + b ^IPP 
+ »N - [1 + 7(1 + !?>, 

rh &-£■   + f1 + &°Pr] (3-8b' 

On a right boundary, 

(1 - -^Hco  + (1 + 4-)cp„ - 2»« + 2* - 2* *    2r ^N       2r ^S  ^^P   TW   TP 

r [h- -i« - 2h a ] (3-8c) 

On a left boundary. 

(1 - ^)»s * (1 + ^)cps - 2CP,, + 2»E - 2tp 

r [ha ^f + 2h 0pr] (3-8d' 

For cylindrical regions not touching the z axis and with 
boundaries parallel to the r and z axis, Eqs.(3-4), (3-3a), and 
(3-8) are sufficient to obtain cp and ^ everywhere, providing 
the boundary conditions are in terms of axisymmetric stresses. 
However, regions that have end-caps and hence touch the z axis 
are of particular interest in this report. 

Conditions on the Axis of Revolution 

For solids of revolution that touch the axis of revolution 
the governing Eqs.(3-4) become undefined in their present form. 
Allen has pointed out it is necessary to apply L'Hospital's rule 
to obtain for these equations on the z axis the limiting forms: 

^ = ^ = 0 (3-9) dza  aza  0 (3 9' 
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which implies cp and if  are linear functions along the z axis. 
Furthermore the displacement u in the r direction relates cp and 
if  by the general equation [See Ref. 1, pg. 196] 

if  + (l-v)cp - (T-HU 
l+v 

Thus along the z axis where r and u are zero, 

cp = - j^- (3-10) 

It follows if if is known on the left and right boundaries of a 
region at the axis of revolution, then if and cp can be obtained 
all along the axis of revolution (z axis). 

In the calculation of if  on the boundary by integration of 
Eq. (3-3a) , the initial value of if  at the starting point of inte- 
gration is arbitrary. Assume that the starting point of the 
integration is always the left intersection of the z-axis with 
the generating area, and the initial value of if  there, hereafter 
denoted as ijf . is set to zero. Then if,   denoted by * , at the 

L R 
right intersection of the z axis with the generating area is, 

•f- ♦R a yropzd8 s 0 {3'll) 

L 

where the integration is around the boundary of the generating 
area from the left to the right intersection of the z axis with 
the solid of revolution.  That the integral vanishes identically 
follows from static equilibrium in the z direction of any sector 
of an axisymmetrically loaded solid of revolution, i.e., 

I a     (rAe)ds s o 
pz 

L 

Note A6 is arbitrary because of axial symmetry. 

It may be concluded from Eqs.(3-9), (3-10), and (3-11) 
that for ♦  set equal to zero, qp and if  will be zero all along 

the axis of revolution. 

With the values of cp and i|i established along the z axis, 
Eqs.(3-4), (3-3a), and (3-8) are sufficient to handle cylindrical 
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regions that touch the z axis, but which do not have interior 
cavities.  Problems that can be solved include cylinders with one 
end open, since they may be classified as having a singly-connected 
region.  Cylinders with both ends capped involve doubly-connected 
regions, and will be discussed in Chapter 4. 

By Eqs. (3-2a,b) the definitions of a  and a     in terms of cp 
r     9 

and if  also become undefined as r goes to zero.  The limiting 
values of these equations are: 

'r-9-i[0
+^,|^] 

Employing symmetry about the z axis and letting cp = i|( = 0 
on the z axis the equivalent difference equation is, 

["r • O8]r=0 ■ (1+v) V + »N (3-12' 

Difference Ecruations in Spherical Coordinates 

For cylinders with hemispherical end-caps it is possible to 
employ a square grid in the rectangular generating area and a 
polar coordinate grid in the quarter ring which generates the 
end-cap.  The two coordinate systems must be coupled together at 
the juncture of the end-cap and cylinder as will be discussed 
later. 

In the quarter ring generating area Eqs.(3-1), (3-2), and 
(3-3) must be transformed to spherical coordinates (which reduce 
to polar coordinates for axial symmetry) and equivalent difference 
equations written. Again, central difference equations were 
employed where possible4 .  Appendix A includes the somewhat 
lengthy derivation of the difference equations applying in the 
quarter ring generating area.  The following equations perform 
the same function in the generating rectangular and quarter ring 
areas respectively:  Eqs.(3-4) and (A-3), (3-6) and (A-15) , and 
Eqs.(3-8) and (A-12, A-13). 

The procedure is identical for the cylindrical and spherical 
regions.  Of particular interest is a problem involving both 
regions coupled together at the juncture of the cylinder and cap. 
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Juncture of Cylindrical and Hemiapherical Regions 

Figure 21 shows the generating area in the neighborhood of 
the juncture of a cylinder and hemispherical end cap.  As stated 
in Appendix A, the stress functions op and I|I will be invariant 
under coordinate tremsformation from physical considerations. 
Coupling of the coordinate systems may thus be accomplished by 
considering the values of the functions along the interface at 
points Pi through r to be common to both regions. 

r 

-E4 

s 
P3V P3 

J&t 11 

II 

Figure 21.  Juncture of cylinder and end cap. 

In Fig. 21, functions at points Pi through P4 are assumed 
to be governed by difference equations in rectangular coordinates. 
The horizontal grid lines are extended into the polar regions 
intersecting radius a-a at points P2E and P3E.  It is not neces- 
sary to extend the grid lines from Pi or P4, since the rectangular 
difference equations there involve only Pi, P2 and P3, P4 respec- 
tively. 

Governing difference equations equivalent to Eqs.(3-1) can 
be written for points P2 and P3 by using equivalent difference 
expressions for the second derivative in the z direction with un- 
equal intervals [See Ref. 1, pg.67].  Considering point P3 of 
Fig. 21 for example; 
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J«,  ha(1+5) It 'P3E v   ;P3W  ? l   'P3j 

(3-13) 

Using the above equation in Eq.(3-la) yields for the governing 
cp equation at P3: 

[(5)(1+?)]
CPP3E+ (1^7)CPP4+ (T7r)cpP3W+ (1 + !F)CPP2-2 (iti)cpP3= 0 

(3-14) 

The value of the function at point P3E in the above equation 
can be expressed in terms of values at points PP4, PP3, and PP2 
by interpolation along the radius a-a.  Using the first three 
terns of Newton's forward interpolating formula FSee Ref. 3, pg. 64], 

(   )p3E« |(2-3u+u
s) (   )pp4+(2u) (2-u) (   )pp3-(u) (1-u) 

(   )pp2] (3-15) 

Substituting Eq. (3-15) into (3-14) yields the gc jrning cp 
equation at point P3. 

(5) (L?) [(2-3u+ua)qppp4+(2u) (2-u)cppp3-(u) (l-u)cppp2] 

+ (1-I7)CpP4 +   (T7?)cPp3W+(1+lr)cpP2  "   2{}^^?3 =  0 

(3-16) 

A similar equation can be written  at point P2 by using  the 
appropriate nodal points  and u and § values. 

The governing equations  for i|i  at point P3  can be found by 
combining the operators of  Eqs.(3-1  )   and   (3-13). 

(;)(!+?) [2-W ' W(2u) (2-u) »PPB "  (u) (1-u, ♦PP2] 

+ (1-^>W(ll?-)tP3w+(1 + I7'*P2 ' ^'»pa 

?( i7?r[(2-3u+u»)cppp4+(2u)(2-u)cppp3 -  ud-u)^^ 

"   'TTT'^Paw +   (?''P3 " 0 '3-17' 
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A similar governing f equation can be written for point P2, 
again using the appropriate nodal points and values of u and £. 

The functions along the radius a-a at points PPl, PP2, etc. 
are assumed to be governed by appropriate equations developed in 
Appendix A for spherical regions. The difference equations at 
those points will involve points Pi through P4 without any modi- 
fications being necessary.  Likewise points P2w and P3W will be 
governed by unmodified rectangular difference equations and will 
involve points P2 and P3. Thus a sufficient number of equations 
are available to solve for all unknown values of cp and f in the 
neighborhood of the juncture of the cylinder and hemispherical 
cap. 
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CHAPTER 3 

APPLICATIONS TO CYLINDERS WITH ONE END CAPPED 

Cylinder with a Flat Cap 

Figure 22 shows the generating area for an example problem 
with a flat cap.  The loading considered was a unit normal pres- 
sure p on the outer surface.  Normal stresses obtained on the 
boundaries by the finite difference method and Southwell stress 
functions are also shown. 

An indication of the error in the solution on the boundaries 
parallel to the z axis can be obtained by comparing the a values 

calculated from the cp and f functions to the known applied normal 
boundary stress. The error is obviously greatest at the re- 
entrant corner, where the boundary was rounded off to avoid a 
singularity.  The nodal point there is considered to be an  interior 
node, but the error inherent in representing a rapidly changing 
geometry by a set of discrete points is apparent.  Grading the 
mesh around the corner would hopefully reduce the error there, 
but would require more hand labor and machine storage. A stress 
concentration obviously exists at the corner which cannot be 
found directly by the finite difference method, but hopefully 
could be approached with a closer spacing of nodal points. The 
solution approaches the Laune* solution quite rapidly as z in- 
creases beyond the neighborhood of the end cap. 

In obtaining the solution for the example problem computer 
programs were designed and used for:  (1) generating most of the 
coefficients in the matrix of coefficients for the unknown cp and 
t|i values at interior nodal points; (2) solving by an iteration 
procedure for cp and f from the complete matrix of coefficients 
and constants vector; and (3) calculating normal stresses on 
boundaries parallel to the z axis. These programs are included 
in Appendix B  Program B-l employs Eqs.(3-4) , while program B-3 
employs Eqs.(3-6). 

vhe generation of the coefficients for boundary points of a 
rectangular generating area must be done by han^ using Eqs.(3-8). 
It is also necessary to modify the coefficients in the equations 
for the points adjacent to the boundary by inserting appropriate 
boundary coefficients or constants according to Eqs. (3-4). The 
constants vector is derived from applying Eqs. (3-8) and (3-4). 
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The iteration procedure for solving the difference equations and 
the program for calculating normal stresses on the boundary may 
be used without hand modification. 

In the second example problem, a unit ring of pressure was 
applied at a particular location.  Figure 23 shows the hoop 
stress on the outside boundary.  The main objective of this ex- 
ample was to study how rapidly the stress decays away from the 
point of load application.  The stress apparently decays quite 
rapidly, implying the effect of the end caps also decays rapidly 
as z increases beyond the neighborhood of the end. 

Cylinders with a Hemispherical Cap 

Figure 24 shows the generating area for an  example problem 
with hemispherical cap.  The loading considered was a unit 
pressure on the outer cylindrical portion of the solid of revolu- 
tion. Normal stresses on the boundaries are also shown. 

Again an indication of the error involved may be obtained 
by comparing the calculated value of stress normal to the boundary 
to the applied stress. As might be anticipated, the maximum error 
occurs near the juncture of the two regions. Again, as in the 
case of a re-entrant corner, grading the mesh near the juncture 
would probably reduce the error there. Additional study of the 
coupling of two coordinate systems for a finite difference 
solution would be desirable. 

In obtaining the solution for the cylinder with a hemi- 
spherical end cap the three computer programs described in the 
previous sub-section were used.  In addition programs were 
written and used for:  (4) generating the coefficients in the 
matrix of coefficients for all points in the quarter-ring 
generating area; and (5) calculating normal stresses on the 
inner and outer surfaces of the hemispherical cap.  These pro- 
grams are included in Appendix B.  Program B-4 employs Eqs. (A-5) , 
(A-6), (A-12) and (A-13).  Program B-5 employs Eqs.(A-15) and 
(A-16). 

Generation of the matrix of coefficients corresponding to 
Fig. 24 requires the use of programs B-l and B-4.  In addition, 
for nodal points on and adjacent to the boundaries of the rectan- 
gular generating area the procedure described in the last sub- 
article which involves hand modification must be used.  For the 
interior nodal points along the interface of the two regions 
equations similar to Eqs.(3-16) and (3-17) must be applied by 
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hand. The final matrix of coefficients must be in a form accept- 
able to the iteration procedure program, B-2. Obviously there 
should be no duplication of numbering of unknowns over the two 
regions comprising the total generating area.  Programs B-3 and 
B-5 will acan  the total output of the solution by program 8-2, 
and calculate the appropriate stresses. 

The hand labor involved for this problem comes about mainly 
from hand applications of difference equations to the boundary 
points of the rectangular generating area and to points along 
the interface between the two areas.  The time expended in machine 
calculations is spent mainly in obtaining the solutions to the 
difference equations. 
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CHAPTER 4 

ANALYSIS OF CYLINDERS WITH BOTH ENDS CAPPED 

Cavities in Axisymmetric Solids 

Allen has discussed the solution for axisymmetric solids with 
a cavity [see Ref. 1, pp. 195-198],  He shows that for any axisym- 
metric body single valuedness of displacement, v, in the z direc- 
tion is insured by the equation 

+ f^)]c3r dz = 0 (3-18) 

where C is any closed curve in the generating area. For any 
curve not enclosing a cavity, the above integral equation re- 
quirement is equivalent to Eqs. (3-1) .  However for solids with 
cavities not touching the axiu of revolution, the above equation 
applied around the inner boundary can be used to determine the 
no longer arbitrary initial value of if   there.  For if the initial 
value of if  on -he exterior boundary is selected to be arbitrary, 
then the initial value of if  on the inner boundary is not. 

For an axisymmetric solid with a cavity touching the axis of 
revolution the above equation yields no information about ^i when 
applied around the inner boundary.  In this case it is not possible 
to rnturn to the starting point of integration because of the "gap" 
along the z axis.  If an integration is performed in the negative 
r region, then the integral all around the axisymmetric cavity 
correctly vanishes identically since this is essentially a re- 
tracing in the oposite direction of the integral in the generating 
area above the z axis.  Another method must be used to determine 
the initial value of  i/  on an  inner cavity. 

Determination of ♦ on an Inner Boundary 

Consider the solid of revolution shown in Fig. 26.  From a 
previous discussion in chapter 2 the values of if  and cp will be 
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related constants along the z axis. 
boundary, denoted by *  along r ■ p 

particular interest. 

The behavior of I|I on an inner 
as p approaches zero, is of 

. Z 

Figure 26.     Determination of i|r    on the  inner 

surface of  a closed cylinder. 

It will be argued that I|I     approaches the value of I|I on the z 

axis,   denoted by * # as p   approaches zero.     Thus,   the  initial value 
z 

of if  on an inner boundary at the axis of revolution is equal to 
the arbitrary initial value of f on an outer boundary at the axis 
of revolution. 

Consider the physical effect of making p ever smaller.  As p 
decreases a  in the central "core" of material along the z axis 

will increase, but at a decreasing rate.  For as p is made smaller 
the central core will carry less of the load that ties the ends 
together.  This force is distributed to the cylinder walls, which 
are theoretically capable of carrying any load.  Furthermore the 
elongation of the core in the z direction will remain small, and 
will become essentially constant as p approaches zero. The latter 
statement is true because the displacement of the cylinder ends in 
the direction of the z axis is affected to an ever smaller extent 
by the decreasing of p after the cylinder walls are carrying almost 
all of the load formerly carried by the core of the cylinder.  It 
follows the strain and hence the stress on the core for small values 
of p remains defined and essentially constant as p becomes smaller. 
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Recall that 
1 a* 

Pf    M      mm     "~   ■ ' 02    r dr' 

and along the z axis, 

Thus if a remains defined throughout the core as p becomes 

■ ■  ♦■V»r,oiirrVir»ii^ ^VIA OOKä anH ^ small, then -r1- throughout the core and r—5- on the z axis remain 

defined. This implies that f  approaches f  as p approaches zero. 
X Z 

It is therefore possible to set f » 0 on the inner boundary 
at the z axis, if the initial value of ijf on the external boundary 
at the z axis is also set to zero.  If the cylinder is subject 
to internal loads on the inner cavity, then f will vary there 
according to Eq.(3-3a). 

The initial value of \|f on the interior surface of a thick 
walled cylinder with both ends capped may be found by the above 
analysis. The solution otherwise is identical to the solution 
for a cylinder with an open end. 

Figure 27 shows normal stresses in a closed flat-end cylinder. 
The cylinder was loaded by a uniform pressure over the ends.  The 
analysis discussed above was used in the determination of the 
initial value of if  on the inner boundary of the cylinder. Values 
of 0  and a were not plotted at the reentrant corner as it was 

felt the values obtained there were unrealistic due to the rapidly 
changing geometry and the relatively coarse mesh employed. 
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Figure 27.  Stresses in a closed cylinder 
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CHAPTER 5 

SUMMARY 

A method has been presented for the determination of stresses 
in axially loaded thick walled cylinders with one end capped.  The 
end cap may be either flat or hemispherical.  Computer programs 
have been designed to handle most of the tedious labor associated 
with the finite difference technique.  Example problems of cylinders 
with both types of end caps are presented. 

The maximum error in the example problems considered occurs 
in the neighborhood of reentrant corners and at the juncture of 
the cylinders and end caps.  Additional refinement of the grid 
would probably reduce the error in these locations, but would 
require additional hand work to obtain the corresponding difference 
equations. 

An analysis of thick walled cylinders with both ends capped 
has been made.  It is shown that on the axis of revolution the 
initial value of the Southwell stress function f on an inner sur- 
face may be set equal to if  on the outer surface.  An example 
problem employing the above analysis is presented for a cylinder 
with both ends capped by flat caps. 

Of additional interest would be:  (1) the effect of re- 
fining the grid at the reentrant corners, (2) a more effective 
coupling together of the two coordinate systems at the juncture 
of the cylinders and hemispherical end caps, and (3) cylinders 
with end caps that are not complete hemispheres. 
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APPENDIX A 

DEVELOPMEWT OF FINITE DIFFERENCE EQUATIONS  FOR 

SOUTHWELL  STRESS  FUNCTIONS   IN  SPHERICAL REGIONS 

As noted previously axisynunetrlc elasticity problems are 
mathematically two dimensional and involve the generating area 
of a solid of revolution.    Thus for spherical regions the prob- 
lem involves a generating area which can most readily be described 
by the coordinates   (R,@)   as shown in Fig.   28. 

r 
i 

'© 

Figure 28.    Coordinate system and notation. 

Since the differential equations governing the Southwell 
stress functions are of second order  it is feasible to transform 
them into the coordinates   (R,@)   and use appropriate polar coor- 
dinate finite difference representations.    From physical con- 
siderations the stress functions f  and <? will be invariant under 
coordinate transformations.    The equations defining the  stresses 
o   ,   o   ,   a    and T       become in  the   (R,<B)   coordinates: r      9      z zr 

ar   "  R Sine 
r*,- o äfcßüL   Cos©     (cp-ulf)     1 r.    ,.     .   -n 

R Sin@ {[ dR R    d6j       vR Sin@ 

(a) 

[♦(l+v)cp]} 

(b) 

(A-l) 
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i re, 0 a*  cos® bin ,  . 
o ■ - ^ ^. ^ Sin® **- + —— TT        (c) 
z    R Sin© L    dR   R  d0J        x 

(A-l) 

zr  R Sin® L    OR   R  d®J v ; 

The normal stresses an and on can be found by stress trans- 
R     ® 

formations of the type involving direction Cosines 1, m, and n: 

n  = o la + a ma + 21m T 
R   z     r        zr 

yields a^ and ort. R     ® 

Substituting Eqs.(A-l) in the stress transformation equations 

v 
°0 ■ T^T: (Sine   (H)  - ^ (If) + Sin=9 [[Sine |f R       R Sin®   L OR R d® L dR 

C|2a 1st] . i_^ [t+Cl-vjcp] 1}. (a) 
R       B0J       R Sin® JJ 

(A-2) 

The governing equations for the Southwell Stress Functions 
cp and <|f in the coordinates (R,®) are: 

■^ - — fcos® ^ - ^-1 = 0 (a) dRa     R3 LC08® a®     a0aJ    0' (a) 

dRa 

dcp Sina®      ?dcp  Sin® Cos 9      aacp Sina® 
+ OR    R    + ^0        ?        + a®3" ~F~ * 

(b) 
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For a circular boundary, *      Ä-. (9QP ~@),     The boundary 

conditions for tha Southwell Stress Functions may then be written 
in terms of   (R,0)   as: 

and 

—*• ■ -ra dS pz (a) 

If +  {^Sin® + H
5^ - KT-T- r*+(l-v)cpl}sine aR     laR a®   R        R sm® LT       v'H'j| 

(A-4) 

- R Sin® a 
pr 

(b) 

The resulting problem in a hollow hemispherical  region can be 
solved by finite difference techniques in a  fashion  similar to 
that for the hollow cylindrical region.    Functions cp and f must 
be found that satisfy Eqs. (A-3)  over  the region and  the boundary 
conditions   (A-4)   on the boundary of the region.    To accomplish 
this central difference equations  in polar coordinates will be 
employed.* 

The notation  shown  in Fig.   29 will be used in the develop- 
ment of  finite difference equations  in the coordinates   (R,®). 

Figure 29.     Notation for nodal points in polar coordinates 
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Only equal intervals in the radial direction will be considered. 
The incremental angles ri shall likewise be equal.  The "compass" 
notation is used to identify the unknown values of cp and f at the 
nodal points labeled as shown above. 

The finite difference equations cozresponding to Eqs.(A-3a) 
and (A-3b) are respectively: 

.h x
ar.  CotQi        .h .ar,  CotOi   ~r-i /h »a1 

(A-5) 
and 

"  [COSa8 +  2R Sina®>E +  B^in& C0S@KE-   (^)aSin@ 

[sin0+TiCose]cpN -(2r^)[sin0 CosRJcp^-^os'e-^Sin8®^ 

+   ("TJ^r8^®  ^^rsw "   ^~R^   Sin® fsin® -  r|Cos®Jcp 

-   (|^)[sin®  Cos0]^sE =  0 (A'6) 

As might be anticipated the boundary conditions are more com- 
plex in the (R,Q) coordinates than in the (r,z) coordinates.  The 
equation (A-4a) may be integrated around the boundary to obtain \|i 
on the boundary, as was done for the (r,z) coordinates.  The equa- 
tion (A-4b) has for its finite difference equivalent: 

Sina6 cp  + (—) Sin® Cos® cp  - Sina0 cp^ - (—r')Sin® Cos^ rp 
E    T|R N W    T]R S 

- (f1) (l-v)cpp + iKE-i|fw- |^p = 2hRSin0 apr. (A-7) 

The "east" or "west" values will be regarded as "fictitious" 
values to be eliminated according to whether the equation is 
applied on the outer or inner boundary of the region. 

Consider for example the development of the boundary equation 
governing cp on the outer boundary of the polar generating area. 
Note again that if   is known on the boundaries from Eq. (A-4a) . 
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To apply Eq. (A-7) on the outer boundary the cp and *  terms 
£      £ 

must be eliminated by combining Eqs.(A-5), (A-6) and (A-7). 

Equation (A-5) is multiplied by (-Sin36) and added to Eq.(A-7) 
eld an equation free of cp , i.e. 

E 

[-Sinae(^)8(l-n 5|^)   +   C^Sin© Cos8}pN-2[sinae]cpw 

[-Sina®(^)    (l+n ^1^)   -   (^~)Sin0 Co8e](ps+2[sina9 

t1+<V]- R(1-V)>P + ♦E - »w - r ♦P -2hR sine v 
(A-8) 

To eliminate i|f     from the above Eq. (A-8)   it  is necessary to E 
obtain a second equation  free of cp   .    A combination of Eqs.(A-5) 

E 
and a modified form of Eq.(A-6) will yield an  appropriate equation 

The modified form of Eq.(A-6) employs a backward difference 
representation of the cross derivative of op in Eq.(A-3b).  This 
is necessary to eliminate the fictitious values of cp  and cp 

NE      SE 
in Eq.(A-6), for there is no possibility of otherwise handling 
these terms.  The backward difference formulas used on the outer 
and inner boundaries for the cross derivative were respectively: 

aa(p Ä _!  r -i 
dÖdR   2Tih L^N " ^NW + ^SW " ^S ' 

(A-9) 

dfSL 
2^h [^NE " ^N + ^S - ^SE] dGdR   2Tih 

Using the first of Eqs.(A-9) in the representation of Eq. 
(A-3b) yields: 

-[co.»e + |5sin»9>E - (^)sine [coW(|-1)+ ^eine>H 

-   (—)[sin© CosQJcp^ -[cosa9-5jjSinae]cpw+(—)[sine Cosöjcp 
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+ (^)sine[co.e(| - i) - ^sin8}ps - o        (A-IO) 

Multiplying Eq. (A-5) by TCos3® + 'ÖR8^8
'
3
'! 

and adding to the 

above equation yields a second equation free of cp . 

+ ^sine]}<pN - (^)[sine co.e^+ljfsin»©^ + f^) 

[sine cort>SM + {(^'[i + Mplco** + Issin'e] 

h ..   .nr.    ..h      ..       h + [^^JC00"6'! - ^ - fc^hs -0 tA-11) 

Subtracting    Eq.(A-8)   from Eq. (A-ll)   yields a boundary equation 
for cp on am outer boundary free of all fictitious values. 

(^R)3{[1"!3S2iS,][1+2RSina0]'[Sina,S,]"[TlSin®  C088]} ^N 

+   (\)a{[1+!lSf^][1-»|5sin8<S>]-[sin8e]+[Tlsinö Cos0]}cps 

+ ,*.,'[! + *f*]U.2[u I +^)']tp - .2hr Sine V 

Note that in the above equations ♦ , ijf , and if    will be known 

values on the boundary. The above equation is the difference 
equation for cp on an outer boundary, R « constant. 
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In a similar fashion the governing equation for cp    on an inner 
boundary may be obtained.     It is necessary in this case to use the 
second of Eqs. (A-9)   in the difference representation of the cross 
derivative in Eq.(A-3b) .     Tin resulting governing op equation is: 

[Si„»9(2-|,>E +   ,^,[si„9 CO«>„+^'{ri - ifip] 

[l^Sin'eJ-fsin'eJ^nSine Co.9]>H+<^)'{[l + Jfip] 

[l-|5Sina9]-['sinae]+[TiSine Co«9]}«Ps-(^j)[sine Co«e}pSE 

-2^'S{1+nf)8(|)(l-v)]-Sin»9[l-(f)a4lf)S   .  1]]K 

2hR Sine a pr 

In the above equation (as in A-12) the values of ijr , * , and 
N   S 

*  are known. 

If only hollow hemispherical regions joined to cylindrical 
regions are studied as in this report, then Eqs.(A-5) , (A-6), 
(A-12) , and (A-13) are sufficient to obtain cp and f over the cir- 
cular area generating the hemispherical region. The value of cp 
will be known along 0 = 0 in general, and the values of cp along 
9 = TT/2 are assumed to be determined by appropriate difference 
equations written for the adjoining rectangular area generating 
the cylindrical region. More detail on this final statement is 
given in the main body of the report. 

The values of cp and f obtained by the above equations may 
then be substituted into the difference equation representation 
of Eqs.(A-ID,d) and Eqs.(A-2) to yield values of o., T  # a D, e zr 
and a,» 

0 

Since the values of cp and f are solved on the boundary and 
in the interior of the region, it is necessary to use a backward 

difference formula for —.  The first three terms of Newton's 
dR 

backward interpolating formula for the first derivative may be 

- 
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used here.3  On the outer boundary the radial derivative operator 
is represented by: 

^«^  3( )p-4(  )w+ (   )w] 

and on the inner boundary, (A-14) 

^ir^-kL   3t >P-4(   »E+ '    »EE] 
The double subscript implies the value of the function at 

the next node beyond the west or east nodal point in the radial 
direction. 

Using Eqs.(A-14) and central difference equations for the 
angular derivatives in Eqs.(A-lb) and (A-2) yields the difference 
equation relations for normal stress on an outer boundary. 

"e* IKS {^'[c°te>^Ww-%-'V[
c<'te>s+[3^Ä>1 

s 

(A-15) 

+ [^il^e]*p} (a) 

+ (^)[Cot9]*s + [3.^p} (b) 

+ f 3-r^]*p]+ ^ f cot9i v w4*w 

- (^)[cote]»g - [3 + f^cote)»]^}  (c) 

On an inner boundary the difference equations Which are uaed 
to determine the normal stresses are: 
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I 

"e* ihi {-»BB+4'B+^)[coteK-n5i,[cot9>8 

L vRSin»eJ<<>P      LvRSln'eJ'p/ ," 

0
R* 2K5? {Sin8e[^EE+4*EH ^^ VfeCcote^8 

>(^)[Cote]ts-[3 + ^]tp} (b) 

-  C3 + 1S£&K] +*EE-4*E*<^'CCOte^H 

-(^)[cote]ts + [3 - f^cote)»]*,,}      (c) 

(A-16) 
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FOREWORD TO APPENDIX B 

Computer Programs 

The programs described were written in Fortran II for the 
IBM 1620.  in certain programs, such as the coefficients generator 
program B-l, the use of cards is implied.  It is convenient to 
remove certain machine generated "flagged" cards by sorting and to 
replace them with hand written cards according to the special 
situation encountered. 

Descriptions of programs, flow charts, and source deck list- 
ings are included.  The stress calculation program, B-5, applying 
-o hemispherical end caps is highly specialized and serves primarily 
as an example program which can be modified for problems other than 
the example solution shown in Fig. 24.  A table of contents for 
Appendix B follows for convenience in locating a specific program. 

Program Page 

B-l.  Coefficients Generator for Southwell Stress 
Functions in Rectangular Coordinates 173 

B-2.  Equations-solver Program by Iteration 185 

B-3.  Calculation of Normal Stresses on Boundaries 
Parallel to the Axis of Revolution 197 

B-4.  Coefficients Generator for Southwell Stress 
Functions in Polar Coordinates 209 

B-5.  Calculation of Normal Stresses on Boundaries 
of a Hemispherical Cap 224 
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APPENDIX B 

COMPUTER PROGRAMS 

Program 1.—Coefficients Generator  for Southwell Stress Functions 
in Rectangular   (r,z)   Coordinates. 

This program essentially generates a matrix of coefficients 
corresponding to  linear algebraic equations derived by finite 
difference techniques and the use of Southwell Stress Functions. 
It generates the matrix of coefficients of the unknown values of 

Op and f  occuring at interior nodal points of a square grid cover- 
ing the regions of interest.    For a complete solution of any prob- 
lem the coefficients generated here must be  supplemented by coef- 
ficients obtained by hand for boundary points and interior points 
adjacent to the boundary.     This program will  flag unknown boundary 
values affecting nodal points adjacent to the boundary as JWl, 
JW2,  JEl,   etc.,  which must  then be  inserted by hand.     The result- 
ing output is in a form suitable for input to the iteration program 
included in this  study. 

Definitions of input parameters which describe the region of 
interest and identify the unknowns  follow. 

K « last row number in the region, obtained as distance 
measured in grid intervals h from the z axis to the 
furtherest parallel grid line in the region. 

J « number associated with the initial unknown qp value 
which is assumed to occur at the left end of the 
initial row.    All unknowns are numbered sequentially 
from left to right and in the increasing r direction, 
through the cp and then  if  unknowns. 

I.   .     « first row number in the region,   obtained as distance 

between the s axis and the nearest parallel grid line. 

Limits of Rows « distances measured in grid intervals h 
from a common r axis to the first and last nodal 
points respectively of rows first through  last. 

Input—(fixed point throuohout) 

1.    Parameter Card 

Cols  1-5 K 
Cols  6-10 J 
Cols  11-15 I. mit 
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2.  Limits of Rows Cards—(Rows I. .  through K in sequence, one 

card per row) 

Cols 1-5     Row No. 
Cols 6-10    Distance to first nodal point in row 
Cols 11-15   Distance to last nodal point in row 

Output 

Cols 1-10    Coefficients of Unknowns 
Cols 11-15   Rows of Unknowns 
Cols 16-20   Cols of Unknowns 

An additional continent should be made that does not deal 
directly with this program.  Before writing by hand the equa- 
tions involving the boundary nodal points the map of the grid 
covering the region should be drawn to avoid error. Note the 
unknowns on the boundaries parallel to the z axis should be 
numbered from left to right, as this is required by the stress 
calculation program B-3. 
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COEFFICIENTS  GENERATOR  IN RECTANGULAR COORDINATES 

f Start)——» 

Define coefficients of eqs. 

A =-4. 

A2=2. 

Vs1- E 

$& 
--1. 

<D 

I 

Read Problem Parameters 
K' J' ^NIT 

(K-Last row No.) 
1   INIT; 

IINIT=FirSt rOW NO* 

=ST 
set point count: 
 M = 0 

T 
Z 
INIT 

Read Limits of Rows and 
Accumulate No. of Points: 

M=M+1-IRF (L) -URL (L) 
(IRF(L)«First point of row L) 
(IRL(L)«Last point of row L) 

Save No. of pts 
f^ « M 

I 
determine the 
number of last 

point: M « M + J 

I 
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9 
Initialize: 
1 " IINIT 

0 
SW 

K. = IRF(I INIT ) 

J, Ä J+VIRL(IINIT) 

Ja   « J 
Ji a   * Ji     save J1   & Ja   for 
Jaa   - Ja     2nd variable 

I 
Set Loop To Calc Coefficients 
For a Point J:  J * J+l 

T 
EJjJ 

i 
(Print "End of Job7^ 

1 

Set Switch for 2nd 
Variable and 
Initialize: 
ISW = 1 

KA " ^»INIT' 
J
I * Jia+Mi 

Ja * Jaa+Mi 
1 ^ IINIT 
M « M+M1 

j     «J-1+IRF,-IRL,   , 
S1 I 1-1 

Ja   .J1+IRLI_1-IRFI-1 

I 
J4«Ja+l+IRLT-IRF 

^ 
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JMWj SJ—Mj — 1 

1 
Punch AWa,J,JMWa N 

*         ' 
iJMa   « J - Mj 1 

|Punch Ag,J,JMa      ^ 

[JMEa   « Ala   •>•  1      *] 

Punch AWa^,^^^ 

Calcs for  Ist Variable: 

1*1 
is 

INIT 

Punch A 
S 

:^o 

1  v^ 
^ 

L^^r   v>^^ Punch J & MJS " X 
^^|c 

Set ST 
Calc A^-.S/Z+l. s 

1 

Z3— 
<i) 

-   171  - 



Punch J+jg^*J 

Punch A 
(Piagon 

3 

Punch A^J, JWj ^S 

ai) r 
| JE^J^-ll 

t 
Punch J & "JE 

^W> 

JN 1=JE1+IRIi-IRFI+1 

Punch A^J.J 
E E i 

J^J^UIRL^-IRF^ 

Punch ^'J'JJJ N 

 EZZ1 

—t . 
Punch J & " JNt ,r^ 

1=1+1        I   ^^ K  =K  +1 
T T "I I A A J^Ja + 1 

KA=IRFI <3) 
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Program 2.—Equations-Solver Program by Iteration 

The program described in the following pages involves an 
iteration procedure which reduces to Gauss Seidel iteration if 
the incorporated over-relaxation factor is set to one. This was 
done for most of the problems of this study, as the equations 
resulting from the finite difference method in conjunction with 
Southwell stress functions tended to diverge or show little 
benefit from the use of an over-relaxation factor other than 
one. 

The program is described in terms of general x unknowns. 
For this study the x unknowns represent the Southwell stress 
functions cp and \|r. Thus two unknowns exist at each interior 
nodal point of a region and one at each boundary nodal point. 

Immediately following the source deck listing of this pro- 
gram is a brief conversion program that converts the output from 
any cycle of iteration to a form suitable for input of initial 
"guesses" of the unknowns for a following cycle of iteration. 
In this way the solution can be interrupted at the end of any 
cycle of iteration and then continued at a later time. 

- 176 - 



Young-Frankel Iteration Program for Solution of 
Sparsely Populated Matrices. 

The purpose of this program is to solve a very large number 
of simultaneous equations by the Young-Frankel over-relaxation 
procedure [See ref. 2, p. 242].  The size of the system that may 
be processed is determined only by the number of non-zero coef- 
ficients and constants.  In solving various types of differential 
equations by finite difference methods, a system of linear equa- 
tions is obtained.  The resulting matrix of coefficient terms is 
usually sparsely populated and the distribution may or may not 
follow a pattern.  Ordinary elimination techniques are impractical 
where the coefficients are randomly distributed, because a large 
amount of intermediate computer storage may be required.  Itera- 
tive techniques are usually more time-consuming, but the storage 
requirements may be kept to a minimum.  Instead of storing the 
coefficient array in its usual two-dimensional array, where most 
of the elements are zero, two one-dimensional arrays are stored; 
one is the list of non-zero coefficients and constants arranged 
in order, the second is an index matrix giving the relative posi- 
tion of the corresponding element in the coefficient and constant 
matrix. The ordering of the elements of both matrices can be 
illustrated in the example shown below: 

a1 j Xj +     *! 3 "a "^i 

a^Xa+a, 3X3-0 

a3 1 ^        +aS 9 ^ "^3 

Order     List of Coefficients     Index Matrix 

1 all 1 

2 »as 3 

3 aa3 5 

4 aaa 6 

5 a»! 7 

6 333 9 

7 Ci 1 

8 C3 3 

For a system of n equations, an additional set of .1 loca- 
tiens is used for intermediate approximations of the unknowns, 
which can be set at the discretion of the operator.  As each 
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new x is computed, the next approximation is taken according 
to the following equation, which forms the basis of the Young- 
Franke1 method: 

where 

x/*"»-1)  = x/*)  + r, (x.'-x, (*)) 

x/k+1) a« next approximation to Xj    (corrected) 

x/k' ■ preceeding approximation 

r, = relaxation  factor  for the  i       equation 

x,' = next approximation to Xj    (uncorrected) 

Note  that  if the relaxation  factor =  1,   then 

x(k+0   = x( 

which is the Gauss-Seidel procedure.  It has been demonstrated 
that the rate of convergence may be greatly accelerated by 
choosing a factor other than 1 in the correction step.  A defi- 
nite optimum may exist which will give the maximum convergence 
rate.  For a given problem, however, this factor must be deter- 
mined, usually by trial based on previous experience.  The pro- 
gram is arranged to allow a different relaxation factor for 
each equation, if desired. 

Additional features of the program include multiple- 
processing of constant vectors without re-entry of the coef- 
ficient list, and intermediate output of results which may be 
obtained at any time during processing.  Since initial approxima- 
tions may be entered, the program may be stopped at any time by 
output of intermediate results which may then be re-entered as 
approximations. A check routine is included to afcertain whether 
all diagonal elements of the coefficients matrix have been 
entered.  A maximum value of the total allowable relative error 
in ehe solution vector may be specified; at any time that the sum 
is leos than that given the program will give the results and 
halt.  A maximum number of iterations may also be given; when 
this number has been completed, the program stops and the results 
to that point are given as output. 

Input 

Type: 
1. Parameter card 

Cols 1-10 TOLR, maximum allowable relative error 
(fixed point) 
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Cols 11-15    No. of equations (fixed point) 
Cols 16-20    Maximum No. of iterations (fixed point) 
Cols 21-48     Problem identification (any alphameric 

data) 

2. Coefficient cards (one card per element) 
Cols 1-10      Element (floating point) 
Cols 11-15     Row No. (fixed point) 
Cols 16-20     Column No. (fixed point) 

(No zero coefficient is permitted as input) 

(The row and column numbers are understood to give the 
position of the element in the original two-dimensional array) 

(Cards must be sorted in order Cols 11-20) 

3. One blank card. 

4. Relaxation factors (as many cards as desired—minimum of 
one« maximum of n) 

Cols 1-10      Factor 
Cols 11-15     Highest row No. for which this factor 

is to be used. 

If one factor is used then the Cols 11-15 must contain 
No. of equation. 

If more than one factor is used, then these cards must 
be sorted in order by Cols 11-15. 

5. One blank card. 

6. Initial approximations (as many cards as desired—minimum 
none, maximum of n—all others assumed zero) 

Cols 1-10     Initial approximation 
Cols 11-15     Position of corresponding x element in 

solution vector. 

Cards must be sorted by Cols 11-15. 

7. One blank card. 
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Young-Frankel Iteration Program 
for Solution of Sparsely Populated Matrices 

GW: 
C   START ) 

ead Problem Parameters 
TOLR, N# ITMAX, P 

I 
Initialize counters 

T 
^ 

Read a non-zero matrix element 
and its subscripts 

Store element 
.n one-dimensional 

array 

I 
Divide row 

by diagonal 
of that row 

I 

1 
Increase 
storage 
counter 

j 
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4 

Initialize to 
read relaxation 
parameters 

1    — 
Read non-zero 

relaxation parameter 

© 
Store 

Parameter 
in one-dimensionai 

array following 
coeffici en ta 
 f 

1 
Initialize to 
read initial 
approximations 

^ 

Read non-zero 
Initial Approximation 

Store 
approximation 

in one-dimensional 
array following 

relax, parameters 

J 
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£ 
Initialize 
to read 
constant 
vector 

< 

Read non-zero 
cnstant vector element 

I 
Divide constant 
vector element 
by diagonal 

of corresponding 
row and store in 
one-dimensional 
array following 

initial approximations 

i 
Transfer initial 
approx. vector 

to solution vector 
area (Subroutine 
 setup)  

© 
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© 
Initialize to 
carry out one 

iteration 

I 
set Y residuale « 0 

i 
set 1=1 (row index) 

compute c,- ) ^• Sj 

where j=approximation 
index 

and k=coefficient 
index 

compute Ax to 
correct old 

approxin^tion 

I 
Find relation 
parameter for 

ROW. 

i 
Compute new approximation 

old approx. + Ax    (relax, parameter) 

I 
accum y   residuals 

I 
Increase 
I-I+l 

€) 
T 
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Punch solution 
vector 

Punch Interme- 
diate solution 
vector 

STuneh Solution 
Vector 

/'Read Parameters new 
constant vector only 

Increase Iteration 
counter 

1 

Increase maximum 
allowable Itera- 
tions by present 
amount  
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Converter Program 

1    R£AD100,I,A,J,B,K,C,L,D 
100 P0RMAT(4(I4,E13.5,3X)) 

PUNCH101,A,I,B,J,C,K,D,L 
101 FORMAT(P10.5,15) 

GO TO 1 
END 
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Program 3.—Calculation of Normal Streifes on Boundariea Parallel 
to the Axia of Revolution. 

This program calculates normal stresses on boundaries paral- 
lel to the z axis according to Eqs. (3-6).  It employs the output 
from any cycle of iteration of the equation solver Program B-2. 
To use the output of Program B-2 the identifying preliminary cards 
must be removed from the particular output being used. 

The equations (3-6) are applied from left to right along the 
boundaries.  This program assumes unknowns will be numbered se- 
quentially from left to right, however there may be gaps in num- 
bering between rows. The Equation Generator, B-l, numbers in- 
terior points from left to right, but care must be taken to num- 
ber boundary points also from left to right.  Known values of f 
from left to right on the boundaries must be read in sequentially 
after each data card.  If f is constant on the boundary, then 
only one if  card is required and the sense switch 1 must be turned 
on. 

Definitions of Input Terms. 

KEQUA = number of equations in input data from program B-2. 

PR   = Poisson's ratio of material 

KEEP = identifying number of first unknown at left end of 
boundary.  See Fig. 30. 

L2   ■ identifying number of unknown cp value at first interior 
point.  See Fig. 30. 

L3   ■ identifying number of unknown f value at first interior 
point.  See Fig. 30. 

L4   a identifying number of unknown cp value at second interior 
nodal point. 

L5   * identifying number of unknown f value at second interior 
nodal point. 

LAST « identifying number of last unknown at right end of 
boundary. 

R    * distance to boundary in terms of grid spacing H. 

H    * grid spacing. This number is 1.0 for all work done in 
this study.  In general it depends on the units in which 
the original difference equations are written. 
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W7 

outer boundary 
KEEP iign ■ 1.0 

\ / 

MUL 

L3 
L4^ 
L51 

U A. 
L5 
L24- 
L3 

LAST 
mrr 

H 
JL 

mjjjL 

KEEP 
inner boundary 

sign = -1.0 
V~~T 

LAST 

Figure 30. Notation for program 3. 

SIGN ■ +1.0 for outer boundary calculations, -1.0 for inner 
boundary calculations. 

PSI  = value of the second Southwell stress function f at boundary 
points at which normal stresses are calculated. 

PSIC « constant value of i|f at boundary points. 

Input 

1. Header Card 
Cols 1-4 
Cols 11-20 

2. Solutions Cards—Output from Program B-2. 

KEQUA, Right Justified Integer (Fixed Pt.) 
PR  , Floating Point 

Data Cards 
Cols:  1-3 KEEP 

4-6 L2 
7-9 L3 

10-12 L4 
13-15 L5 
16-18 LAST 
19-28 R 
29-38 H 
39-48 SIGN 

Right Justified Integer 
Right Justified Integer 
Right Justified Integer 
Right Justified Integer 
Right Justified Integer 
Right Justified Integer 
Floating Point 
Floating Point 
Floating Point 

(Fixed Pt.) 
(Fixed Pt.) 
(Fixed Pt.) 
(Fixed Pt.) 
(Fixed Pt.) 
(Fixed Pt.) 

PSIC Card (S.S. 1 on), or PSI Cards (S.S. 1 off) 
Cols  1-10   PSIC or PSI 
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Output 

Sigma R    ■ values of normal ttreaa at point in r direction. 
Sigma Theta ■ values of normal stress at point in 9 direction. 
Sigma z    ■ values of normal stress at point in z direction. 
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Calculation of Normal Stresses on Boundaries 
of a Thick-walled Cylinder 

INPUT 

/  Read KEQUA, PR  "" 
Read (X(I), 1-1,KEQUA 

Read KEEP, L2, L3, IA, 
L5,   LAST, R, H, SIGN 

d Read (PSI(I), I-KEEP Last 

1 
LI - KEEP 

Calculate 
SIGT (LI) -Equation (3-6) 
SIGR(Ll)-Equation(3-6) 
SIGZ(LI)-Equation(3-6) 

L1>LAST 
140 ) < ^1>LAST^ ©■ 

L1<LAST 

Read PSIC ■  r 
■ KEEP 

Set Equal 
PSI(I)«PSIC 

I-I+l 
Tesv^ X ^LAST I>LASTVU. 

OUTPUT 
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Program 4.—Coefficients Generator for Southwell stress Functions 
in Polar (R,®) Coordinates. 

This program generates the matrix of coefficients correspond- 
ing to the linear algebraic equations derived by finite difference 
techniques and Southwell stress functions. It essentially applies 
Eqs.(A-13)# (A-5), (A-12), and (A-6) to a quarter-ring which« when 
rotated, generates a hemispherical solid. 

With reference to Figure 31, this program will generate the 
entire matrix of coefficients for the generating ring area, except 
for the coefficients of the unknowns along 8 ■ TT/2. These unknowns 
lie on the interface between the end cap and cylinder, and equa- 
tions applying here must be written by hand according to Eqs.(3-16) 
and (3-17). Note however that this program will write the complete 
equations for points adjacent to the interface, and therefore the 
unknowns along the interface must be numbered. There must be no 
duplication in numbering of unknowns anywhere over the ring and 
subsequently coupled rectangular area. The output of this program 
is in a form similar to that of Program B-l, and can be combined 
with it as input to the equation solver Program B-2. 

Referring to Figure 31 the equations of Appendix A are applied 
in the following orders  (1) Eq. (A-13) on the inner boundary start- 
ing at point "MIKE" and moving in the increasing 8 direction, 
(2) Eq. (A-5) to interior points in the increasing 8 and then R 

SIGPR, 

mac 

<Pmike(PSIP.   and PHI,) + (IJK-1) (IB-IA) 

mike 

mike 

•1;ik.t'ijK-i><iB-i*> 

Figure 31.    Notation for program 4. 
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directions, (3) Eq. (A-12) on the outer boundary in the increasing 
9 direction, and (4) Bq.(A-6) to interior points in the increasing 
0 and then R directions. The first three steps involve tp  unknowns 
at the inner boundary, interior, and outer boundary nodal points 
respectively. The last step involves ijr unknowns at interior nodal 
points. 

Definitions of Input parameters and symbols used in the pro- 
gram follow. 

IA 

IB 

IJK 

MIKE 

MAC 

PR 

PHI 

SI6PR 

ETA 

THETA 

Xl,X2,etc. 

CONST 

CONH 

■ Interior radius, an integer in terms of h, the grid 
spacing in the R direction, > 0 

■ Exterior radiu», an integer in terms of h, > IA+1. 

■ Number of angular subdivisions of one quadrant, 23. 

■ Identifying number associated with the unknown cp 
value on the inner boundary at the initial point of 
the ring. See Figure 31. 

■ Identifying number associated with the unknown cp 
value on the inner boundary at the initial point of 
the juncture of the ring with the cylinder. See 
Figure 3. 

« (1-v), one minus Poisson's ratio of the material. 

■ Input values of op along the inner and outer boundaries 

pr 
Input values of applied stress in r direction 
along inner and outer boundaries. 

Increment of angle in polar grid. 

Polar angle at location of equation application. 
See Fig. 31. 

Varying coefficients of cp and if  values appearing in 
Eqs.(A-13), (A-5), etc. 

Constant coefficients of cp and i|r values appearing in 
Eqs.(A-13), (A-5), etc. 

Constant term of an equation that appears in the con- 
stants vector.  It is made up of input boundary values 
of f and boundary stress a  according to Eqs. (A-13), 
(A-5), etc. pr 

Input 
1. First Data Card 

Cols 1-3 
Cols 4-6 
Cols 7-9 

IA A right justified integer (Fixed Pt.) 
IB A right justified integer (Fixed Pt.) 
IJK A right justified integer (Fixed Pt.) 
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Cols 10-12 MIKE 
Cols 13-15 MAC 
Cols 16-30 PR 

A right justified integer (Fixed Pt.) 
A right justified integer (Fixed Pt.) 
Floating Point. 

2. Additional Data Cards—Use floating point numbers, 8 per card, 
10 cols, per number, blank cards read as zeros. Data is sequen- 
tial, and no spaces must be left unless they represent zeros. 
Example Tnput data is listed: 

Inner Boundary Terms i 

*[mike]' 0[prmikeV *[mike+l]' 0[pr mike+l] ' * '' ^[mike+IJK^], 

Outer Boundary Terms:  (follow above data with no spaces) 

^mike+dJK-l) (IB-IA) j' 0[pr (same pt.]' '[mike+dJK-l) (IB-IA) + 1] 

aCpr same pt.]'*   *'  *[mikeMlJK-l) (IB-IA+1)-1]'  0[pr same] 
Horizontal Boundary Terms:     (follow above data with no spaces) 

^[mike]'   '•'[mike]' ^[nvike+IJL] '   *[mike+IJL]'  <!P[mike+2 (IJL) ]' 

*[same]',,,'  ^[mike+dJK-l) (IB-IA)].   *Csame]' 

Lower Point on Vertical Boundary:  (follows above data with no 
spaces) 

*[mike+IJK-l] 

Top Point on Vertical Boundary:  (follows above data with no spaces) 

*[mike+(IB-IA+l) (IJK-1)] 

Output 

Coefficients Cards 
Cols 1-10 Coefficients in Floating Point 
Cols 11-15 Row number of Coefficients 
Cols 16-20 Column Number of Coefficients 

Constants Cards 
Cols 1-10    Constants in Floating Point 
Cols 11-15   Corresponding Row Number of Constant 
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Coefficients Generator in Polar Coordinates 

INPUT 

o 1Z 
Read IA,   IB,  IJK, 
MIKE,   MAC,   PR 

I 
Calculate 

PII,   ETA,   IJL,   IK, 
IC,   IZ,   JAY,   IE,   IJN, 
IG,  MIKE 1,  MIKE  2, 
KJ 

I 
Read (PSI (I), SIGPR(I), I-MIKE, IJ) , 
(PSI(I), SIGPR(I), I-MIKE1,MIKE2), 
(PHI(I), PSIP(I), I-MIKE1, IJL), 
PSI(KJ+1), PSI(MIKE2+1) 

(2> 

I 
Initialize 

PII«IA 

HRHOl./PII 
NN-1 
IQ=0 
I-MIKE 

[46 
E 

1 
Q-ICfl 

3Z 
IQ 

Calculate 
THETA,   HOE,   HOESQ, 
H,   HH,   S,   C,   SS,   CC,   SC, 
HOZ,   A,   D,   DONEP, 
DONEM,   ETASC 

Q 

(iSO—*© 

1 
Calculate 

Q#   (xi,   i-1,   9), 
CONH 

I-MIKE 

KMIKE 

I>MIKE o 
Calculate 

CONH, MN, Ml 

fPunch CONH, I] 
I^MN, Ml, X3, X6 J 

6 
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1 
Calculate 
MN, CONH, Ml 

nch XI. I. MN) 
, Ml. CONH 
—. y 

Punch 
X4 

I>K 

I<K <5 
Calculate 
MN-MAC+1 

unch X3,   X6/ 
I,  MAC,  MM    t 

~T=-Q 
Calculate 
Ml,  CONST 

I 
Punch X6, I. MN. 
X2. X5. Ml. CONST 

I<KJ 

0 
ZI-L 

©-5 

I 

Initialize 
IQ-0 
MZ-IA+II 
PII-M2 
HRHO-l./PII 
N-KK+IJN 

3 

€> 

I«KK 

H 
IQ-IOfl 

® 

I-I+l 17^ 

I>KJ 

Initialize 
NN«2 

KK-MIKE+IJL 

© 
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Calculate 
X10,X11,X12,M1 
CONST 

I OUTPUT 

Punch CONST, 
I, Ml, Xll 

KKK 
I>KK 

Punch CCNH, 
I,   X12,  MN 

I>N 

I KK"N->-l| 

~1 
l^1-1 I 

Punch X10,   I, 
MN 

KM 
I>M 

I-N 

Ml-MAC+II 

Punch X12; 
1. m , 

KN I-I+l €) 
IKIE 

II-II+l -/32 
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A I* 

. 

II-l 

I 
Initialize 
KJ-0 
IQ-0 
M2-IA+II 
PII-M2 
HRHO-l./PII 
N-JAY+IJN 

11-1 

*  KK-0 

JJ-0 

I-N 

calculate 
(Xj, i-1, 12) 

I-JAY 

I t  JAY 

Calculate 
Ml, M2, M3 
CONH 

II»! 

II-IE 

( 

Punch I, 
CONH 

Calculate 
Ml«M2,MJ,N4 

I 
KmclTMl,  W2^ 
H3. HA,   1,   X3, 
X6,   X9,   X12 
  / 

5 

*© 

24^ 

■© 
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© 
Calculate 
Ml,  M2#  N3 

I 

® 

Punch XI,   I, 
Ml,   X4,   M2,   X7 
M3 

Calculate 
Ml,  CONST 

I 

9 
Calculate 
Ml» .CONH 

Punch 
CONST,   I, 

JtSl 

Punch 
CONH, I 

i 
MN-I-1 

I / S 
Punch X10, I, 
MN Q 

eaC [ 
Calculate 

Ml, M2, M3, MN 

Punch X3, X6, 
X9, I, Ml, M2, 
M3. MN  

T 
Calculate 
Ml, M2, M3 

Punch X2, X5, 
X8, Xll, I, Ml, 
M2, M3 

8t\ JJ«0 €> 
J^O 

0 

Calculate 
Ml,CONST 

Calculate 
Ml,CONH 

i   : 
Punch 
CONST, Ml« 

Punch 
CONH, I 

T 

I>N 

KN 

JAY-N+1 

II>IE 

1*1+1 

© 
• II-II+] 

Initialize 
NN«4 
IQ-0 

I 
I-MIKE  1 

I 
IQ-IO+1 
PII-IB 
HRHO-1/PII 
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f 
Calculate 
(Xj ,i-1.9) ,0, 
00NH 

I-MIKE1 

Z^MIKEl 

Calculate 
Ml, CONH. MN 

I 

© 

Punch 
CCNHflfXa.Ml 
X6,MN 

Calculate 
Ml, CONST 

I 
Punch 

X2,  X5,  Ml,   I 
CONST 

1 
Calculate 
Ml,  MN,  CONH, 

I 
Punch XI,   I, 

Ml,   X4,  MN,   CONH 

?eiCS^    I<MIKE2 
«MIKE2. 

<B 

Punch 
X3,   X6,   I,  Ml,   M2 

J 

KMIKE2 
I-I+: 10i 

I>MIKE2 
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Program 5.—Calculation of Normal Stresses on Boundaries of a 
Hemispherical End Cap. 

This program calculates values of normal stress on the boun- 
daries of hemispherical regions according to Eqs.(A-15) and (A-16). 
As the program is now written it is specialized for the generating 
quarter ring area shown in Fig. 24. Thus TI « TT/30 in the equa- 
tions (A-15) and (A-16).  However this program could be easily 
modified to a more general form. 

Definitions of input parameters follow: 

L Number identifying first unknown in the output of 
program B-2 (lowest row No. in the matrix of coeffi- 
cients for cp and i) , 

N Number identifying last unknown in output of program 
B-2. 

K Integer multiplying TI such that ©«KTI, see Fig. 32. 

JJ=2        Defines location in terms of K of initial point at 
which stress is calculated on inner boundary. 

IK=13       Defines location in terms of K of final point at 
which stress is calculated on inner boundary. 

MM Subscript of cp at IK from map of region.  (See Fig. 
32). 

MK Subscript of cp at initial point at which stress is 
calculated on the outer boundary. 

NK Subscript of cp at final point at which stress is 
calculated on the outer boundary 

II=L+70=71  Subscript of cp at initial point on inner boundary 
for the example problem sho\*n in Fig. 24.  This num- 
ber should be changed for a different numbering of 
the initial point.  This requires a modification of 
the program, i.e., number of 70 must be changed. 

KK=N-78=82  Subscript of cp at point preceding final point on 
inner boundary at which stress is calculated. 
Special case for Fig. 3-5, number of 78 must be 
changed for different problem. 
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Input—Fixed Point 

1. First Card 
Cols. 1.5 L 
Cols. 6-10 N 
Cols. 11-15 K 
Cols. 16-20 JJ 
Cols. 21-25 IK 
Cols. 26-30 MM 
Cols. 31-35 MK 
Cols. 36-40 NK 

2. Data Cards 
Output of Program B-2, all preliminary cards removed. 

3. Output 
Values of Sigma Theta « o ,  Sigma Nor * aR* Sigma Tan 

versus K. Note Kr) ■ 8. v 

Figure 32. Notation for program 5. 
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Calculation of Normal Stresses 
on Boundaries of a Hemispherical End-Cap 

INPUT 

Read L. N, K, JJ, 
IK, MM, MK, NK 

Read (X(J)) , J»Lf N 

© 

Calculate 
KK=N-78 
II-L+70 

OFF Switch 1S£N 

j^Read (PSI (J) , J»II ,MM) 
Read (PSI(J), J«MK#NK) 

-F* 

^ J s II 

Calculate 
SIGNO(K)-Equation A-15B 
SIGNI(K)-Equation A-16B 
STHEO (K)-Equation A-15A 
STHEI (K)-Eauation A-16A 
SIGTI(K)-Equation A-16C 
SIGTO(K)-Equation A-15C 

OUTPUT 

^unch   (K, SIGNO (K) /^ 
SIGNI(K),   STHEO (K) , 
SIGTI(K),   SIGTO(K), 

»SgTHEKK),   K^JJ^K) y 

(l 
1 

Read PSIC 

J « III 
J 

| Set Equal 
PSI(J) = ] PSIC 
PRIUT+1)  : ■ PSIC 
PSI(J+2) -. . PSIC 
PSI(J+42) « PSIC 
PSI(J+43) - PSIC 
PSI(J+44) = PSIC 
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